Deciding the First Levels of the Modal mu Alternation Hierarchy by Formula Construction

نویسندگان

  • Karoliina Lehtinen
  • Sandra Quickert
چکیده

We construct, for any sentence Ψ of the modal μ calculus (Lμ), a derived sentence ΨML in the modal fragment ML of Lμ and a sentence ΨΠ μ 1 in the fragment Πμ1 of Lμ without least fixpoints such that Ψ is equivalent to a formula in ML or Πμ1 if and only if it is equivalent to ΨML or ΨΠ μ

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating Levels of the Mu-Calculus Hierarchy and Levels of the Monadic Hierarchy

As already known [14], the mu-calculus [17] is as expressive as the bisimulation invariant fragment of monadic second order Logic (MSO). In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation invariant fragment of levels of the monadic quantifiers alternation-dep...

متن کامل

Fixpoint alternation: Arithmetic, transition systems, and the binary tree

We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.

متن کامل

The Topological Complexity of Models of the μ-Calculus On The Alternation Free Fragment and Beyond

Recently Murlak and one of the authors have shown that the family of trees recognized by weak alternating automata (or equivalently, the family of tree models of the alternation free fragment of the modal μcalculus) is closed under three set theoretic operations that corresponds to sum, multiplication by ordinals < ωω and pseudo exponentiation with the base ω1 of the Wadge degree. Moreover they...

متن کامل

Disjunctive form and the modal μ alternation hierarchy

This paper studies the relationship between disjunctive form, a syntactic normal form for the modal μ calculus, and the alternation hierarchy. First it shows that all disjunctive formulas which have equivalent tableau have the same syntactic alternation depth. However, tableau equivalence only preserves alternation depth for the disjunctive fragment: there are disjunctive formulas with arbitrar...

متن کامل

A Linear-Time Model-Checking Algorithm for the Alternation-Free Modal Mu-Calculus

We develop a model-checking algorithm for a logic that permits propositions to be deened using greatest and least xed points of mutually recursive systems of equations. This logic is as expressive as the alternation-free fragment of the modal mu-calculus identiied by Emerson and Lei, and it may therefore be used to encode a number of temporal logics and behavioral preorders. Our algorithm deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015