Thermoresponsive Gels
نویسندگان
چکیده
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology—for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)—provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.
منابع مشابه
Aqueous gelation of ionic liquids: reverse thermoresponsive ion gels.
The aqueous gelation of a quaternary ammonium oligo(propylene oxide)-based ionic liquid yields ion gels with a reverse thermoresponsive behavior (i.e., mechanical moduli and viscosity increase with temperature) and enhanced ionic conductivities.
متن کاملColloidal thermoresponsive gel forming hybrids.
Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three diffe...
متن کاملReversible water uptake/release by thermoresponsive polyelectrolyte hydrogels derived from ionic liquids.
Thermoresponsive polyelectrolyte hydrogels, derived from tetra-n-alkylphosphonium 3-sulfopropyl methacrylate-type ionic liquid monomers, show reversible water uptake/release, in which the gels absorb/desorb water for at least ten cycles via a lower critical solution temperature-type phase transition.
متن کاملThermally reversible colloidal gels for three-dimensional chondrocyte culture.
Healthy cells are required in large numbers to form a tissue-engineered construct and primary cells must therefore be increased in number in a process termed 'expansion'. There are significant problems with existing procedures, including cell injury and an associated loss of phenotype, but three-dimensional culture has been reported to offer a solution. Reversible gels, which allow for the reco...
متن کاملThermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system.
In this study the properties of poly(D,L-lactide-co-glycolide) (PLGA) dispersions containing a thermoresponsive cationic copolymer were investigated. The PLGA dispersions were prepared by interfacial deposition in aqueous solution and were rendered thermoresponsive by addition of a cationic poly(N-isopropyl acrylamide) (PNIPAm) graft copolymer. The copolymers used had the general composition PD...
متن کاملThermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye.
PURPOSE To characterize thermoresponsive hydrogels (liquids at room temperature, gels at body temperature) as a novel drug delivery platform to the posterior segment. METHODS Thermoresponsive hydrogels were synthesized using poly(N-isopropylacrylamide) (PNIPAAm), cross-linked with poly(ethylene glycol) diacrylate (PEG-DA). Proteins were then encapsulated into the hydrogels, including bovine s...
متن کامل