Planning robot formations with fast marching square including uncertainty conditions

نویسندگان

  • Javier V. Gómez
  • Alejandro Lumbier
  • Santiago Garrido
  • Luis Moreno
چکیده

This paper presents a novel algorithm to solve the robot formation path planning problem working under uncertainty conditions such as errors the in robot’s positions, errors when sensing obstacles or walls, etc. The proposed approach provides a solution based on a leader-followers architecture (real or virtual leaders) with a prescribed formation geometry that adapts dynamically to the environment. The algorithm described herein is able to provide safe, collision-free paths, avoiding obstacles and deforming the geometry of the formation when required by environmental conditions (e. g. narrow passages). To obtain a better approach to the problem of robot formation path planning the algorithm proposed includes uncertainties in obstacles’ and robots’ positions. The algorithm applies the Fast Marching Square (FM) method to the path planning of mobile robot formations, which has been proved to work fast and efficiently. The FM method is a path planning method with no local minima that provides smooth and safe trajectories to the robots creating a time function based on the properties of the propagation of the electromagnetic waves and depending on the environment conditions. This method allows to easily include the uncertainty reducing the computational cost significantly. The results presented here show that the proposed algorithm allows the formation to react to both static and dynamic obstacles with an easily changeable behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Robot Formations Path Planning with Fast Marching Square

This work presents a path planning algorithm for 3D robot formations based on the standard Fast Marching Square (FM2) path planning method. This method is enlarged in order to apply it to robot formations motion planning. The algorithm is based on a leader-followers scheme, which means that the reference pose for the follower robots is defined by geometric equations that place the goal pose of ...

متن کامل

Robot formation motion planning using Fast Marching

This paper presents the application of the Voronoi Fast Marching method to Path Planning of Mobile Formation Robots. The Voronoi Fast Marching method uses the propagation of a wave (Fast Marching) operating on the world model to determine a motion plan over a viscosity map (similar to the refraction index in optics) extracted from the updated map model. The computational efficiency of the metho...

متن کامل

General Path Planning Methodology for Leader-Follower Robot Formations

This paper describes a robust algorithm for mobile robot formations based on the Voronoi Fast Marching path planning method. This is based on the propagation of a wave throughout the model of the environment, the wave expanding faster as the wave’s distance from obstacles increases. This method provides smooth and safe trajectories and its computation...

متن کامل

Performance analysis of fast marching-based motion planning for autonomous mobile robots in ITER scenarios

Operations of transportation in cluttered environments require robust motion planning algorithms. Specially with large and heavy vehicles under hazardous operations of maintenance, such as in the ITER, an international nuclear fusion research project. The load transportation inside the ITER facilities require smooth and optimized paths with safety margin of 30 cm. The transportation is accompli...

متن کامل

Application of the fast marching method for outdoor motion planning in robotics

In this paper, a new path planning method for robots used in outdoors environments is presented. The proposed method applies Fast Marching to a 3D surface represented with a triangular mesh to calculate a smooth trajectory from one point to another. The method uses a triangular mesh instead of a square mesh since this kind of grid adapts better to 3D surfaces. The novelty of this approach is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013