Numerical Approximation of Option Pricing Model under Jump Diffusion Using the Laplace Transformation Method

نویسندگان

  • HYOSEOP LEE
  • DONGWOO SHEEN
چکیده

We propose a LT (Laplace transformation) method for solving the PIDE (partial integro-differential equation) arising from the financial mathematics. An option model under a jump-diffusion process is given by a PIDE, whose non-local integral term requires huge computational costs. In this work, the PIDE is transformed into a set of complex-valued elliptic problems by taking the Laplace transformation in time variable. Only a small number of Laplace transformed equations are then solved on a suitable choice of contour. Then the time-domain solution can be obtained by taking the Laplace inversion based on the chosen contour. Especially a splitting method is proposed to solve the PIDE, and its solvability and convergence are proved. Numerical results are shown to confirm the efficiency of the proposed method and the parallelizable property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Pricing and Hedging of Quantile Options in a Flexible Jump Diffusion Model

This paper proposes a Laplace-transform-based approach to price the fixed-strike quantile options as well as to calculate the associated hedging parameters (delta and gamma) under a hyperexponential jump diffusion model, which can be viewed as a generalization of the well-known Black–Scholes model and Kou’s double exponential jump diffusion model. By establishing a relationship between floating...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

Semi-discretization Algorithm for Option Pricing in CEV Jump- diffusion Model

This paper proposes an option pricing technique we developed to approximate hedge jump risk under a CEV jumpdiffusion model. First, we established the options pricing model and the its partial differential equation by applying the Itô formula and non-arbitrage principle based on approximating hedge jump risk approximation; we next developed the concrete numerical algorithm for the equation by s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009