Kinetochore structure and spindle assembly checkpoint signaling in the budding yeast, Saccharomyces cerevisiae.
نویسندگان
چکیده
The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase until every chromosome is properly bioriented at the spindle equator. Mutations in SAC genes have been found in tumors and compromised SAC function can increase the incidence of some carcinomas in mice, providing further links between cancer etiology, chromosome segregation defects and aneuploidy. Here we review recent developments in our understanding of SAC control with particular emphasis on the role of the kinetochore, the nature of the tension sensing mechanism and the possibility that the SAC encompasses more than just stabilization of securin and/or cyclin-B via inhibition of the APC/C to delay anaphase initiation. Our primary emphasis is on the SAC in the budding yeast Saccharomyces cerevisiae. However, relevant findings in other cells are also discussed to highlight the generally conserved nature of SAC signaling mechanisms.
منابع مشابه
Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast.
Saccharomyces cerevisiae cells containing one or more abnormal kinetochores delay anaphase entry. The delay can be produced by using centromere DNA mutations present in single-copy or kinetochore protein mutations. This observation is strikingly similar to the preanaphase delay or arrest exhibited in animal cells that experience spontaneous or induced failures in bipolar attachment of one or mo...
متن کاملThe Coordination of Centromere Replication, Spindle Formation, and Kinetochore–Microtubule Interaction in Budding Yeast
The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome-microtubule interaction. Most eukaryotic cells form the spindle and establish kinetochore-microtubule interaction during mitosis, but budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is shorter than that in metaphase, but the biolo...
متن کاملSpindle checkpoint proteins and chromosome–microtubule attachment in budding yeast
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD...
متن کاملSgt1 is required for human kinetochore assembly.
Budding yeast Sgt1 is required for kinetochore assembly, and its homologues have a role in cAMP signalling in fungi and pathogen resistance in plants. The function of mammalian Sgt1 is unknown. We report that RNA interference-mediated depletion of Sgt1 from HeLa cells causes dramatic alterations of the mitotic spindle and problems in chromosome alignment. Cells lacking Sgt1 undergo a mitotic de...
متن کاملInteractions Between the Kinetochore Complex and the Protein Kinase A Pathway in Saccharomyces cerevisiae
The kinetochore is a large structure composed of multiple protein subcomplexes that connect chromosomes to spindle microtubules to enable accurate chromosome segregation. Significant advances have been made in the identification of kinetochore proteins and elucidation of kinetochore structure; however, comparatively little is known about how cellular signals integrate with kinetochore function....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 13 شماره
صفحات -
تاریخ انتشار 2008