Rapid competitive PCR using melting curve analysis for DNA quantification.

نویسندگان

  • S Al-Robaiy
  • S Rupf
  • K Eschrich
چکیده

A rapid competitive PCR method was developed to quantify DNA on the LightCycler. It rests on the quantitative information contained in the melting curves obtained after amplification in the presence of SYBR Green I. Specific hybridization probes are not required. Heterologous internal standards sharing the same primer binding sites and having different melting temperatures to the natural PCR products were used as competitors. After a co-amplification of known amounts of the competitor with a DNA-containing sample, the target DNA can be quantified from the ratio of the melting peak areas of competitor and target products. The method was developed using 16S rDNA fragments from Streptococcus mutans and E. coli and tested against existing PCR-based DNA quantification procedures. While kinetic analysis of real-time PCR is well established for the quantification of pure nucleic acids, competitive PCR on the LightCycler based on an internal standardization was found to represent a rapid and sensitive alternative DNA quantification method for analysis of complex biological samples that may contain PCR inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification and Optimization of Candida albicans DNA in Blood Samples Using Real- Time PCR

Background: Candida albicans (C. albicans) is a major cause of candidaemia in people with impaired immunity. Blood culture is a “gold standard” for candidaemia detection but is time-consuming and relatively insensitive. We established a real-time PCR assay for C. albicans detection in blood by LightCycler PCR and melting curve analysis. Methods: Five milliliter blood samples from...

متن کامل

Quantification of HER2/neu gene amplification by competitive pcr using fluorescent melting curve analysis.

BACKGROUND Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. METHODS Increasing twofold concentrations of competitor were coamplified with DNA from ce...

متن کامل

Development of a Sensitive Quantitative Competitive PCR Assay for Detection of Human Cytomegalovirus DNA

Accurate and rapid diagnosis of human cytomegalovirus (HCMV) disease in immunocompromised patients has remained as a challenge. Quantitative competitive PCR (QC-PCR) methods for detection of HCMV in these individuals have improved the positive and negative predictive values of PCR for diagnosis of HCMV disease. In this study we used QC-PCR assay, using a co-amplified DNA standard, to quantitate...

متن کامل

Genotyping common SNP and a microsatellite sequence closely linked to waxy gene in rice by DNA based markers

The potential of different DNA based molecular markers was examined for the detection of single nucleotide polymorphism (SNP) in the waxy gene and a microsatellite (SSR) sequence closely linked to it in a collection of rice varieties. DNA was extracted from leaf samples of 68 different rice cultivars by the CTAB method and specific primers were designed for the amplification of waxy gene and SS...

متن کامل

Comparison of cattle BoLA-DRB3 typing by PCR-RFLP, direct sequencing, and high-resolution DNA melting curve analysis

Major histocompatibility complex (MHC) represents an important genetic marker for manipulation to improve the health and productivity of cattle. It is closely associated with numerous disease susceptibilities and immune responses. Bovine MHC, also called bovine leukocyte antigen (BoLA), is considered as a suitable marker for genetic diversity studies. In cattle, most of the polymorphisms are lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 31 6  شماره 

صفحات  -

تاریخ انتشار 2001