Selberg integrals and Catalan-Pfaffian Hankel determinants
نویسندگان
چکیده
In our previous works “Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants” (by M.Ishikawa, H. Tagawa and J. Zeng, J. Combin. Theory Ser. A, 120, 2013, 1263–1284) we have proposed several ways to evaluate certain Catalan-Hankel Pffafians and also formulated several conjectures. In this work we propose a new approach to compute these Catalan-Hankel Pffafians using Selberg’s integral as well as their q-analogues. In particular, this approach permits us to settle most of the conjectures in our previous paper. Résumé. Dans nos travaux précédents “Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants” (by M.Ishikawa, H. Tagawa and J. Zeng, em J. Combin. Theory Ser. A, 120, 2013, 1263–1284) nous avons proposé plusieurs méthodes pour évaluer certains Catalan–Pffafian déterminants de Hankel et avons aussi formulé plusieurs conjectures. Dans ce travail nous proposons une nouvelle approche pour calculer ces Catalan-Pffafian determinants de Hankel en utilisant l’intégrale de Selberg ainsi que leurs q-analogues. En particulier, cette approche nous permet de confirmer la plus part de nos conjectures précédentes.
منابع مشابه
Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants
Motivated by the Hankel determinant evaluation of moment sequences, we study a kind of Pfaffian analogue evaluation. We prove an LU -decomposition analogue for skew-symmetric matrices, called Pfaffian decomposition. We then apply this formula to evaluate Pfaffians related to some moment sequences of classical orthogonal polynomials. In particular we obtain a product formula for a kind of q-Cata...
متن کاملHankel hyperdeterminants and Selberg integrals
Abstract. We investigate the simplest class of hyperdeterminants defined by Cayley in the case of Hankel hypermatrices (tensors of the form Ai1i2...ik = f(i1+i2+· · ·+ik)). It is found that many classical properties of Hankel determinants can be generalized, and a connection with Selberg type integrals is established. In particular, Selberg’s original formula amounts to the evaluation of all Ha...
متن کاملMotzkin Number Pfaffian (theorem 2)
Evaluate the Pfaffian Pfa i, j 1i, j2 n where ai, j j i Mi j 3 with Mn denoting the Motzkin numbers: Mn k0 n 1 k1 n 2 k 2 k k. The evaluation of this Pfaffian was conjectured in the paper "Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants'' Now we guess an implicit description (linear recurrences) for the auxiliary function c 2 n,i. We set the option AdditionalEqua...
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملHankel Determinants of Dirichlet Series
We derive a general expression for the Hankel determinants of a Dirichlet series F (s) and derive the asymptotic behavior for the special case that F (s) is the Riemann zeta function. In this case the Hankel determinant is a discrete analogue of the Selberg integral and can be viewed as a matrix integral with discrete measure. We brie y comment on its relation to Plancherel measures.
متن کامل