An Introduction to Quantum Neural Computing
نویسندگان
چکیده
The goal of the artificial neural network is to create powerful artificial problem solving systems. The field of quantum computation applies ideas from quantum mechanics to the study of computation and has made interesting progress. Quantum Neural Network (QNN) is one of the new paradigms built upon the combination of classical neural computation and quantum computation. It is argued that the study of QNN may explain the brain functionality in a better way and create new systems for information processing including solving some classically intractable problems. In this paper we have given an introductory representation of quantum artificial neural network to show how it can be modelled on the basis of double-slit experiment. Also an attempt is made to show the quantum mechanical representation of a classical neuron to implement Hadamard transformation.
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملA Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملQuantum Associative Memory with Quantum Neural Network via Adiabatic Hamiltonian Evolution
There is increasing interest in quantum computing, because of its enormous computing potential. A small number of powerful quantum algorithms have been proposed to date; however, the development of new quantum algorithms for practical use remains essential. Parallel computing with a neural network has successfully realized certain unique functions such as learning and recognition; therefore, th...
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کامل