Sandpile models : The infinite volume model , Zhang ’ s model and limiting shapes
نویسنده
چکیده
We define stabilizability of an infinite volume height configuration and of a probability measure on height configurations. We show that for high enough densities, a probability measure cannot be stabilized. We also show that in some sense the thermodynamic limit of the uniform measures on the recurrent configurations of the abelian sandpile model (ASM) is a maximal element of the set of stabilizable measures. In that sense the self-organized critical behavior of the ASM can be understood in terms of an ordinary transition between stabilizability and non-stabilizability.
منابع مشابه
Abelian Sandpile Models in Infinite Volume∗
Since its introduction by Bak,Tang and Wiesenfeld, the abelian sandpile dynamics has been studied extensively in finite volume. There are many problems posed by the existence of a sandpile dynamics in an infinite volume S: its invariant distribution should be the thermodynamic limit (does the latter exist?) of the invariant measure for the finite volume dynamics; the extension of the sand grain...
متن کاملLimiting Shapes for a Non-Abelian Sandpile Growth Model and Related 353 Cellular Automata
We present limiting shape results for a non-abelian variant of the abelian sandpile growth model (ASGM), some of which have no analog in the ASGM. One of our limiting shapes is an octagon. In our model, mass spreads from the origin by the toppling rule in Zhang’s sandpile model. Previously, several limiting shape results have been obtained for the ASGM using abelianness and monotonicity as main...
متن کامل. PR ] 1 5 Fe b 20 07 Limiting shapes for deterministic internal growth models
We study the rotor router model and two deterministic sandpile models. For the rotor router model in Z, Levine and Peres proved that the limiting shape of the growth cluster is a sphere. For the other two models, only bounds in dimension 2 are known. A unified approach for these models with a new parameter h (the initial number of particles at each site), allows to prove a number of new limitin...
متن کاملInfinite volume limits of high-dimensional sandpile models
We study the Abelian sandpile model on Z. In d ≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008