A note on sampling and parameter estimation in linear stochastic systems
نویسندگان
چکیده
Numerical differentiation formulas that yield consistent least squares parameter estimates from sampled observations of linear, time invariant higher order systems have been introduced previously by Duncan et al. The formulas given by Duncan et al. have the same limiting system of equations as in the continuous time case. The formula presented in this note can be characterized as preserving asymptotically a partial integration rule. It leads to limiting equations for the parameter estimates that are different from the continuous case, but they again imply consistency. The numerical differentiation formulas given here can be used for an arbitrary linear system, which is not the case in the previous paper by Duncan et al.
منابع مشابه
Phase II monitoring of multivariate simple linear profiles with estimated parameters
In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...
متن کاملFurther Results on Robust Variance-Constrained Filtering for Uncertain Stochastic Systems with Missing Measurements
In this note, we consider a new filtering problem for linear uncertain discrete-time stochastic systems with missing measurements. The parameter uncertainties are allowed to be norm-bounded and enter into the state matrix. The system measurements may be unavailable (i.e., missing data) at any sample time, and the probability of the occurrence of missing data is assumed to be known. The purpose ...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملStructure parameter estimation algorithms for model selection
This paper presents deterministic and stochastic algorithms of the structure parameters estimation for the model selection problem. Structure parameters optimization for linear and non-linear models is investigated. The optimized error function is inferred from statistical hypothesis on the model parameter distributions. Analytic algorithms are based on the error function derivatives estimation...
متن کاملMapping CRC Card into Stochastic Petri Net for Analyzing and Evaluating Quality Parameter of Security (TECHNICAL NOTE)
CRC cards are unconventional method for identifying and describing classes, behavior and its responsibilities and collaborators of class. Representation of three categories of class, responsibilities and collaborators can give proper image of scenario. These cards are effective method for analyzing scenarios. With all positive features of CRC cards, of weaknesses of these cards are failure to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Automat. Contr.
دوره 44 شماره
صفحات -
تاریخ انتشار 1999