The Fujita Exponent for Semilinear Heat Equations with Quadratically Decaying Potential or in an Exterior Domain

نویسنده

  • ROSS PINSKY
چکیده

Consider the equation (0.1) ut = ∆u− V u+ au p in R × (0, T ); u(x, 0) = φ(x) 0, in R, where p > 1, n ≥ 2, T ∈ (0,∞], V (x) ∼ ω |x| as |x| → ∞, for some ω 6= 0, and a(x) is on the order |x| as |x| → ∞, for some m ∈ (−∞,∞). A solution to the above equation is called global if T = ∞. Under some additional technical conditions, we calculate a critical exponent p such that global solutions exist for p > p, while for 1 < p ≤ p, all solutions blow up in finite time. We also show that when V ≡ 0, the blow-up/global solution dichotomy for (0.1) coincides with that for the corresponding problem in an exterior domain with the Dirichlet boundary condition, including the case in which p is equal to the critical exponent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fujita Exponent for Semilinear Heat Equations with Quadratically Decaying Potential

Consider the equation (0.1) ut = ∆u− V u+ au p in R × (0, T ); u(x, 0) = φ(x) 0, in R, where p > 1, n ≥ 2, T ∈ (0,∞], V (x) ∼ ω |x| as |x| → ∞, for some ω 6= 0, and a(x) is on the order |x| as |x| → ∞, for some m ∈ (−∞,∞). A solution to the above equation is called global if T = ∞. Under some additional technical conditions, we calculate a critical exponent p such that global solutions exist fo...

متن کامل

Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential

We study the balance between the effect of spatial inhomogeneity of the potential in the dissipative term and the focusing nonlinearity. Sharp critical exponent results will be presented in the case of slow decaying potential.

متن کامل

Local and Global Existence of Solutions to Semilinear Parabolic Initial Value Problems

This paper is devoted to establishing local and global existence theorems for autonomous semilinear parabolic initial value problems. The local existence theorems do not require Lipchitz condition on nonlinear term. The global existence theorem is an extension of the well-known result of Fujita-Weissler for semilinear heat equations to general autonomous semilinear parabolic equations and systems.

متن کامل

Scalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference

Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008