Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity
نویسندگان
چکیده
BACKGROUND Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. RESULTS In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3-hydroxybutyrate and the mcl-PHAs were composed of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers. CONCLUSIONS These results demonstrated, as proof of concept, that talented strains such as P. pseudoalcaligenes might be applied in bioremediation of industrial residues containing cyanide, while concomitantly generate by-products like polyhydroxyalkanoates. A customized optimization of the target bioremediation process is required to gain benefits of this type of approaches.
منابع مشابه
Metabolic adaptation of Pseudomonas pseudoalcaligenes CECT5344 to cyanide: role of malate-quinone oxidoreductases, aconitase and fumarase isoenzymes.
In general, the biodegradation of a toxic compound by a micro-organism requires the concurrence of, at least, two features in the biological system: first, the capability of the micro-organism to metabolize the toxic compound, and secondly, the capacity to resist its toxic effect. Pseudomonas pseudoalcaligenes CECT5344 is a bacterium used in the biodegradation of cyanide because it is capable t...
متن کاملAlkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344.
Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, beta-cyanoalanine, and other cyanoderivatives as nitrogen sources under alkaline conditions, which prevents volatile HCN (pK(a) 9.2) formation. The cyanide consumed by this strain is stoichiometrically converted into ammonium. In addition, this bacterium grows with the heavy metal, cyanide-containing waste water generated by the jewe...
متن کاملQuantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS)
Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the differe...
متن کاملRole of Fur on cyanide tolerance of Pseudomonas pseudoalcaligenes CECT5344.
Pseudomonas pseudoalcaligenes CECT5344 can be used in cyanide bioremediation processes because it grows at pH 9.5 using 2.0 mM cyanide at the sole nitrogen source. Cyanide strongly binds to metals creating iron-deprivation conditions. The bacterium responds to the presence of cyanide by inducing several processes such as siderophore synthesis for iron capture, cyanide-insensitive respiration sy...
متن کاملBacterial degradation of cyanide and its metal complexes under alkaline conditions.
A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative p...
متن کامل