Edaphic Factors and the Landscape-scale Distributions of Tropical Rain Forest Trees
نویسندگان
چکیده
Tropical rain forests have the highest tree diversity on earth. Nonrandom spatial distributions of these species in relation to edaphic factors could be one mechanism responsible for maintaining this diversity. We examined the prevalence of nonrandom distributions of trees and palms in relation to soil type and topographic position (‘‘edaphic biases’’) over a mesoscale (573 ha) old-growth tropical rain forest (TRF) landscape at the La Selva Biological Station, Costa Rica. All trees and palms $10 cm diameter were measured and identified in 1170 circular 0.01-ha plots centered on an existing 50 3 100 m grid. Topographic position was classified for each plot, and slope and aspect were measured. Soil type data were taken from a previous study (Clark et al. 1998). A total of 5127 trees and palms were identified in 267 species. Detrended Correspondence Analysis and Canonical Correspondence Analysis showed that highly significant edaphic gradients were present, with swamp or highly fertile soils separated from the less fertile, well-drained upland soils. Species composition remained significantly related to topographic position when soil type was controlled for. The main floristic gradients were still significant when flooded sites were excluded from the analyses. Randomization tests on a weighted preference index were used to examine the relations of individual species to soil types and, within the dominant soil type, to topographic position. Of the 132 species with N $ 5 individuals, 33 showed significant associations with soil type. Within the dominant soil type, 13 of 110 analyzable species were nonrandomly associated with one or more topographic positions. For a variety of reasons, including issues relating to sample size and adequate edaphic characterization of landscapes, we suggest that the ;30% of species shown to be edaphically biased in this study is an underestimate of the true degree of edaphically related distributional biases. To evaluate this hypothesis will require mesoscale vegetation sampling combined with quantitative soil analyses at the same scale in a range of tropical rain forests. If edaphic distributional biases are shown to be common, this suggests that edaphically linked processes leading to differential recruitment are similarly common.
منابع مشابه
Landscape-scale variation in forest structure and biomass in a tropical rain forest
A better understanding of the reasons for variation in tropical rain forest (TRF) structure is important for quantifying global above-ground biomass (AGBM). We used three data sets to estimate stem number, basal area, and AGBM over a 600-ha oldgrowth TRF landscape (La Selva, N.E. Costa Rica). We analyzed the effects of soil type, slope angle, topographic position, and different sample designs a...
متن کاملPhosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil
Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of...
متن کاملFirst direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity.
Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m(2)) across 500 ha of old growth in Costa Rica. Landscape LAI...
متن کاملMultidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape
Have tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively...
متن کاملThe Effect of the Landscape Matrix on the Distribution of Dung and Carrion Beetles in a Fragmented Tropical Rain Forest
Understanding the response of species to anthropogenic landscape modification is essential to design effective conservation programs. Recently, insects have been used in empirical studies to evaluate the impact of habitat modification and landscape fragmentation on biological diversity because they are often affected rapidly by changes in land use. In this study, the use of the landscape matrix...
متن کامل