Extreme deviations for sums of random variables

نویسنده

  • D. Sornette
چکیده

Stretched exponential probability density functions (pdf), having the form of the exponential of minus a fractional power of the argument, are commonly found in turbulence and other areas. They can arise because of an underlying random multiplicative process. For this, a theory of extreme deviations is developed, devoted to the far tail of the pdf of the sum X of a finite number n of independent random variables with a common pdf e −f (x). The function f (x) is chosen (i) such that the pdf is normalized and (ii) with a strong convexity condition that f ′′ (x) > 0 and that x 2 f ′′ (x) → +∞ for |x| → ∞. Additional technical conditions ensure the control of the variations of f ′′ (x). The tail behavior of the sum comes then mostly from individual variables in the sum all close to X/n and the tail of the pdf is ∼ e −nf (X/n). This theory is then applied to products of independent random variables, such that their logarithms are in the above class, yielding usually stretched exponential tails. An application to fragmentation is developed and compared to data from fault gouges. The pdf by mass is obtained as a weighted superposition of stretched expo-nentials, reflecting the coexistence of different fragmentation generations. For sizes near and above the peak size, the pdf is approximately log-normal, while it is a power law for the smaller fragments, with an exponent which is a decreasing function of the peak fragment size. The anomalous relaxation of glasses can also be rationalized using our result together with a simple multiplicative model of local atom configurations. Finally, we indicate the possible relevance to the distribution of small-scale velocity increments in turbulent flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Fluctuations in Physical Systems: a Subtle Interplay between Sum and Extreme Value Statistics

Fluctuations of global additive quantities, like total energy or magnetization for instance, can in principle be described by statistics of sums of (possibly correlated) random variables. Yet, it turns out that extreme values (the largest value among a set of random variables) may also play a role in the statistics of global quantities, in a direct or indirect way. This review discusses differe...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Large deviations for sums of partly dependent random variables

We use and extend a method by Hoeffding to obtain strong large deviation bounds for sums of dependent random variables with suitable dependency structure. The method is based on breaking up the sum into sums of independent variables. Applications are given to U -statistics, random strings and random graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997