Parallel Computation of the Eigenstructure of Toeplitz-plus-Hankel Matrices on Multicomputers
نویسندگان
چکیده
In this paper we present four parallel algorithms to compute any group of eigenvalues and eigenvectors of a Toeplitz-plus-Hankel matrix. These algorithms parallelize a method that combines the bisection technique with a fast root-finding procedure to obtain each eigenvalue. We design a parallel algorithm that applies a static distribution of the calculations among processors and three algorithms that use the farming technique to dynamically balance the load. All the algorithms have been implemented on a Multicomputer based on a network of transputers. We also present a study of the experimental performances and compare the different algorithms. The results obtained are in many cases very near to the maximum theoretical performances we can expect.
منابع مشابه
Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel Kernel
The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the method.
متن کاملSplit Algorithms and ZW-Factorization for Toeplitz and Toeplitz-plus-Hankel Matrices
New algorithms for Toeplitz and Toeplitz-plus-Hankel are presented that are in the spirit of the “split” algorithms of Delsarte/Genin. It is shown that the split algorithms are related to ZW-factorizations like the classical algorithms are related to LU-factorizations. Special attention is paid to skewsymmetric Toeplitz, centrosymmetric Toeplitz-plus-Hankel and general Toeplitz-plus-Hankel matr...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations
Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part I. Transformations
Transformations of the form A ! C 1 AC 2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C 1 and C 2 are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques,in part II algorithmsfor Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part Ii. Algorithms
In the rst part 13] of the paper transformationsmappingToeplitz and Toeplitz-plus-Hankel matrices into generalizedCauchy matrices were studied. In this second part fast algorithms for LU-factorization and inversion of generalized Cauchy matrices are discussed. It is shown that the combinationof transformation pivoting techniques leads to algorithms for indeenite Toeplitz and Toeplitz-plus-Hanke...
متن کامل