Manhattan-Geodesic Embedding of Planar Graphs
نویسندگان
چکیده
In this paper, we explore a new convention for drawing graphs, the (Manhattan-) geodesic drawing convention. It requires that edges are drawn as interior-disjoint monotone chains of axis-parallel line segments, that is, as geodesics with respect to the Manhattan metric. First, we show that geodesic embeddability on the grid is equivalent to 1-bend embeddability on the grid. For the latter question an efficient algorithm has been proposed. Second, we consider geodesic point-set embeddability where the task is to decide whether a given graph can be embedded on a given point set. We show that this problem is NP-hard. In contrast, we efficiently solve geodesic polygonization—the special case where the graph is a cycle. Third, we consider geodesic point-set embeddability where the vertex–point correspondence is given. We show that on the grid, this problem is NP-hard even for perfect matchings, but without the grid restriction, we solve the matching problem efficiently.
منابع مشابه
Geodesic Obstacle Representation of Graphs
An obstacle representation of a graph is a mapping of the vertices onto points in the plane and a set of connected regions of the plane (called obstacles) such that the straight-line segment connecting the points corresponding to two vertices does not intersect any obstacles if and only if the vertices are adjacent in the graph. The obstacle representation and its plane variant (in which the re...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملGeodesic Distance in Planar Graphs: An Integrable Approach
We discuss the enumeration of planar graphs using bijections with suitably decorated trees, which allow for keeping track of the geodesic distances between faces of the graph. The corresponding generating functions obey non-linear recursion relations on the geodesic distance. These are solved by use of stationary multi-soliton tau-functions of suitable reductions of the KP hierarchy. We obtain ...
متن کاملStatistics of planar graphs viewed from a vertex: A study via labeled trees
We study the statistics of edges and vertices in the vicinity of a reference vertex (origin) within random planar quadrangulations and Eulerian triangulations. Exact generating functions are obtained for theses graphs with fixed numbers of edges and vertices at given geodesic distances from the origin. Our analysis relies on bijections with labeled trees, in which the labels encode the informat...
متن کامل