Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri

نویسندگان

  • Pablo Delfino Pérez
  • Stephen J. Hagen
چکیده

The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V. fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V. fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico structural analysis of quorum sensing genes in Vibrio fischeri

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...

متن کامل

Quorum Sensing in the Squid-Vibrio Symbiosis

Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, qu...

متن کامل

Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon.

The Vibrio fischeri quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL) activates expression of the seven-gene luminescence operon. We used microarrays to unveil 18 additional 3OC6-HSL-controlled genes, 3 of which had been identified by other means previously. We show most of these genes are regulated by the 3OC6-HSL-responsive transcriptional regulator LuxR directly. This dem...

متن کامل

LuxO controls luxR expression in Vibrio harveyi: evidence for a common regulatory mechanism in Vibrio.

Quorum-sensing control of luminescence in Vibrio harveyi, which involves an indirect autoinducer-mediated phosphorelay signal transduction system, contrasts with the prototypical quorum-sensing system of Vibrio fischeri, in which the autoinducer and the transcriptional activator LuxR directly activate lux operon expression. In V. harveyi, a regulator not homologous to V. fischeri LuxR and also ...

متن کامل

Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors.

Vibrio fischeri possesses two quorum-sensing systems, ain and lux, using acyl homoserine lactones as signaling molecules. We have demonstrated previously that the ain system activates luminescence gene expression at lower cell densities than those required for lux system activation and that both systems are essential for persistent colonization of the squid host, Euprymna scolopes. Here, we ask...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010