The knee in full flexion: an anatomical study.
نویسندگان
چکیده
There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120 degrees and 160 degrees of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120 degrees to 160 degrees the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160 degrees the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160 degrees of flexion. Neither the events between 120 degrees and 160 degrees nor the anatomy at 160 degrees could result from a continuation of the kinematics up to 120 degrees . Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0 degrees to 160 degrees .
منابع مشابه
Changes of the Patellar Tendon Moment arm Length in Different Knee Angles: A Biomechanical in Vivo Study
Patellar tendon moment arm length (PTma) changes at different knee flexion angles have not been determined in invivo studies. We aimed to determine PTma in four different knee angles using Magnetic Resonance Imaging (MRI) topredict in vivo changes in the moment arm length from different knee angles during running.PTma was measured as the perpendicular distance from muscle–tend...
متن کاملIn vivo kinematics of the knee during weight bearing high flexion.
Achieving high flexion is an objective of contemporary total knee arthoplasty; however little is known on the knee biomechanics at high flexion under weight-bearing conditions. This study investigates the 6DOF kinematics and tibiofemoral cartilage contact biomechanics of the knee during weight-bearing flexion from full extension to maximal flexion. Eight knees from seven healthy subjects with n...
متن کاملMeasurement of Posterior Tibial Slope Using Magnetic Resonance Imaging
Background: Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which leads to knee joint stability. Posterior tibial slope affects flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the...
متن کاملMinimally Invasive Anatomical Reconstruction of Posteromedial Corner of Knee: A Cadaveric Study.
We conducted a study to determine if a minimally invasive posteromedial reconstruction technique would return medial knee stability to its intact state. Ten cadaveric knees were tested under 3 state conditions: intact, sectioned, and reconstructed. The medial compartment opening was measured on valgus stress radiographs at full extension and at 20° of flexion with a 10-N valgus load (applied wi...
متن کاملIn Vivo Healthy Knee Kinematics during Dynamic Full Flexion
Healthy knee kinematics during dynamic full flexion were evaluated using 3D-to-2D model registration techniques. Continuous knee motions were recorded during full flexion in a lunge from 85° to 150°. Medial and lateral tibiofemoral contacts and femoral internal-external and varus-valgus rotations were analyzed as a function of knee flexion angle. The medial tibiofemoral contact translated anter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of bone and joint surgery. British volume
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2009