Structural Optimization of Variational Inequalities Using Piecewise Constant Level Set Method

نویسنده

  • Andrzej Myslinski
چکیده

The paper deals with the shape and topology optimization of the elliptic variational inequalities using the level set approach. The standard level set method is based on the description of the domain boundary as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton-Jacobi equation. In the paper a piecewise constant level set method is used to represent interfaces rather than the standard method. The piecewise constant level set function takes distinct constant values in each subdomain of a whole design domain. Using a two-phase approximation and a piecewise constant level set approach the original structural optimization problem is reformulated as an equivalent constrained optimization problem in terms of the level set function. Necessary optimality condition is formulated. Numerical examples are provided and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS FOR STRUCTURAL TOPOLOGY OPTIMIZATION USING PHASE FIELD METHOD

In this paper the piecewise level set method is combined with phase field method to solve the shape and topology optimization problem. First, the optimization problem is formed based on piecewise constant level set method then is updated using the energy term of phase field equations. The resulting diffusion equation which updates the level set function and optimization ...

متن کامل

Shape and Topology Optimization of Elastic Contact Problems using the Piecewise Constant Level Set Method

This paper considers the shape and topology optimization of the elastic contact problems using the level set approach. A piecewise constant level set method is used to represent interfaces rather than the standard method. The piecewise constant level set function takes distinct constant values in each subdomain of a whole design domain. Using a two-phase approximation the original structural op...

متن کامل

Shape and topology optimization for elliptic bound- ary value problems using a piecewise constant level set method

The aim of this paper is to propose a variational piecewise constant level set method for solving elliptic shape and topology optimization problems. The original model is approximated by a two-phase optimal shape design problem by the ersatz material approach. Under the piecewise constant level set framework, we first reformulate the two-phase design problem to be a new constrained optimization...

متن کامل

Graph Cut Optimization for the Piecewise Constant Level Set Method Applied to Multiphase Image Segmentation

The piecewise constant level set method (PCLSM) has recently emerged as a variant of the level set method for variational interphase problems. Traditionally, the Euler-Lagrange equations are solved by some iterative numerical method for PDEs. Normally the speed is slow. In this work, we focus on the piecewise constant level set method (PCLSM) applied to the multiphase Mumford-Shah model for ima...

متن کامل

An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method

The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011