Hermitian and quaternionic Hermitian structures on tangent bundles

نویسنده

  • Rui Albuquerque
چکیده

We review the theory of quaternionic Kähler and hyperkähler structures. Then we consider the tangent bundle of a Riemannian manifold M with a metric connection D (with torsion) and with its well estabilished canonical complex structure. With an extra almost Hermitian structure on M it is possible to find a quaternionic Hermitian structure on TM , which is quaternionic Kähler if, and only if, D is flat and torsion free. We also review the symplectic nature of TM . Finally a proper S3-bundle of complex structures is introduced, expanding to TM the well known twistor bundle of M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Almost Hermitian structures on tangent bundles

In this article, we consider the almost Hermitian structure on TM induced by a pair of a metric and an affine connection on M . We find the conditions under which TM admits almost Kähler structures, Kähler structures and Einstein metrics, respectively. Moreover, we give two examples of Kähler-Einstein structures on TM . 2000 Mathematics Subject Classification: 53C55, 53C15, 53C25.

متن کامل

Chern Numbers and the Geometry of Partial Flag Manifolds

We calculate the Chern classes and Chern numbers for the natural almost Hermitian structures of the partial flag manifolds Fn = SU(n + 2)/S(U(n) × U(1) × U(1)). For all n > 1 there are two invariant complex algebraic structures, which arise from the projectivizations of the holomorphic tangent and cotangent bundles of CP. The projectivization of the cotangent bundle is the twistor space of a Gr...

متن کامل

Geometry and Topology of Manifolds

s 19 ALEKSEEVSKY, Dmitri , Geometry of quaternionic and para-quaternionic CR manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 BELKO, Ivan, The fundamental form on a Lie groupoid of diffeomorphisms 20 BOGDANOVICH, Sergey A., ERMOLITSKI, Alexander A., Hypercomplex structures on tangent bundles . . . . . . . . . . . . . . . . . . . . 22 DESZCZ, Ryszard, On Roter type mani...

متن کامل

Tangent Bundles with Sasaki Metric and Almost Hypercomplex Pseudo-hermitian Structure

The tangent bundle as a 4n-manifold is equipped with an almost hypercomplex pseudo-Hermitian structure and it is characterized with respect to the relevant classifications. A number of 8-dimensional examples of the considered type of manifold are received from the known explicit examples in that manner.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007