Mifepristone acts as progesterone antagonist of non-genomic responses but inhibits phytohemagglutinin-induced proliferation in human T cells.
نویسندگان
چکیده
BACKGROUND Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca(2+)](i)) and decreased intracellular pH (pH(i)). Mifepristone (RU486) produces mixed agonist/antagonist effects on immune cells compared with progesterone. We explored whether RU486 is an antagonist to mPRs and can block rapid non-genomic responses and the induction by phytohemagglutinin (PHA) of cell proliferation. METHODS Human male peripheral T cell responses in terms of pH(i) and [Ca(2+)](i) changes were measured using the fluorescent dyes, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and fura-2, respectively. Expression of mPR mRNA was determined by RT-PCR analysis. Cell proliferation and cell toxicity were determined by [(3)H]-thymidine incorporation and MTT assay, respectively. RESULTS The mRNAs of mPRalpha, mPRbeta and mPRgamma were expressed in T cells. RU486 blocked progesterone-mediated rapid responses including, the [Ca(2+)](i) increase and pH(i) decrease, in a dose related manner. RU486 did not block, but enhanced, the inhibitory effect of progesterone on PHA induced cell proliferation. RU486 alone inhibited proliferation induced by PHA and at >25 microM seems to be cytotoxic against resting T cells (P < 0.01). CONCLUSIONS RU486 is antagonistic to the rapid mPR-mediated non-genomic responses, but is synergistic with progesterone with respect to the inhibition of PHA-induced cell proliferation. Our findings shine new light on RU486's clinical application and how this relates to the non-genomic rapid physiological responses caused by progesterone.
منابع مشابه
O-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells
Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...
متن کاملP-24: Opioid and Progesterone Signaling Is Obligatoryfor Early Human Embryogenesis
Background: The growth factors that drive the division and differentiation of stem cells during early human embryogenesis are unknown. The secretion of endorphins, progesterone (P(4)), human chorionic gonadotropin, 17beta-estradiol, and gonadotropin-releasing hormone by trophoblasts that lie adjacent to the embryoblast in the blastocyst suggests that these pregnancy-associated factors may direc...
متن کاملMifepristone Increases the Cytotoxicity of Uterine Natural Killer Cells by Acting as a Glucocorticoid Antagonist via ERK Activation
BACKGROUND Mifepristone (RU486), a potent antagonist of progesterone and glucocorticoids, is involved in immune regulation. Our previous studies demonstrated that mifepristone directly augments the cytotoxicity of human uterine natural killer (uNK) cells. However, the mechanism responsible for this increase in cytotoxicity is not known. Here, we explored whether the increased cytotoxicity in uN...
متن کاملبررسی تأثیر سرم موش حامله بر روی سلولهای دندریتیک در القاء تحریک لنفوسیتهای T و تولید سیتوکینهای IL-10 و IFN-γ Dendritic Cells and Antigen Specific T Cell Responses: Effect of Pregnant Mouse Serum
Background & Aim: Tolerance to the semi-allogenic fetal graft by the maternal immune system is a medical enigma that has stimulated investigations for a half of century. Several hypotheses have been proposed to explain the tolerance of mother to the fetus. The successful pregnancy is proposed and proved by many scientists to be a Th2 dominant phenomenon. This hypothesis is proved in most as...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2009