Nonstandard Numerical Methods for a Class of Predator-prey Models with Predator Interference

نویسندگان

  • DOBROMIR T. DIMITROV
  • HRISTO V. KOJOUHAROV
چکیده

We analyze a class of predator-prey models with BeddingtonDeAngelis type functional response. The models incorporate the mutual interference between predators, which stabilizes predator-prey interactions even when only a linear intrinsic growth rate of the prey population is considered. Positive and elementary stable nonstandard (PESN) finite-difference methods, having the same qualitative features as the corresponding continuous predatorprey models, are formulated and analyzed. The proposed numerical techniques are based on a nonlocal modelling of the growth-rate function and a nonstandard discretization of the time derivative. This approach leads to significant qualitative improvements in the behavior of the numerical solution. Applications of the PESN methods to specific Beddington-DeAngelis predator-prey systems are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstandard finite-difference methods for predator-prey models with general functional response

Predator-prey systems with linear and logistic intrinsic growth rate of the prey are analyzed. The models incorporate the mutual interference between predators into the functional response which stabilizes predatorprey interactions in the system. Positive and elementary stable nonstandard (PESN) finite-difference methods, having the same qualitative features as the corresponding continuous pred...

متن کامل

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

Dynamics of an eco-epidemic model with stage structure for predator

The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007