Hybrid inter- and intra-wavelet scale image restoration

نویسندگان

  • Lei Zhang
  • Paul Bao
  • Xiaolin Wu
چکیده

This paper exploits both the interand intra-scale interdependencies that exist in wavelet coe3cients to improve image restoration from noise-corrupted data. Using an over-complete wavelet expansion, we group the wavelet coe3cients with the same spatial orientation at several scales. We then apply the linear minimum mean squared-error estimation to smooth noise. This scheme exploits the inter-scale correlation information of wavelet coe3cients. To exploit the intra-scale dependencies, we calculate the co-variance matrix of each vector locally using a centered square-shaped window. Experiments show that the proposed hybrid scheme signi7cantly outperforms methods exploiting only the intraor inter-scale dependencies. The performance of noise removal also depends on wavelet 7lters. In our experiments a biorthogonal wavelet, which best characterizes the image inter-scale dependencies, achieves the best results. ? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies

Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Image Segmentation of Printed Fabrics with Hierarchical Improved Markov Random Field in the Wavelet Domain

An improved MRF algorithm–hierarchical Gauss Markov Random Field model in the wavelet domain is presented for fabric image segmentation in this paper, which obtains the relation of inter-scale dependency from the feature field modeling and label field modeling. The Gauss-Markov random field modeling is usually adopted to feature field modeling. The label field modeling employs the inter-scale c...

متن کامل

An improved hybrid image watermarking scheme in shearlet and wavelet domain

Watermarking is one of the best solutions for copyright protection and authentication of multimedia contents. In this paper a hybrid scheme is proposed using wavelet and shearlet transforms with singular value decomposition. For better security, Arnold map is used for encryption. Examining the results and comparing with other methods show that this hybrid proposed scheme with simultaneous utili...

متن کامل

A Hybrid Restoration Approach of Defocused Image Using MGAM and Inverse Filtering

A novel hybrid restoration scheme of defocused image is presented, which uses multivariate generalized additive model (MGAM) which is a nonparametric statistical regression model with no curse of dimensionality and inverse filtering (InvF). In this algorithm, firstly the five features of wavelet domain in defocused digital image, which are very stable relationship with the point spread function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2003