Pseudokinases from a structural perspective.

نویسندگان

  • Susan S Taylor
  • Andrey Shaw
  • Jiancheng Hu
  • Hiruy S Meharena
  • Alexandr Kornev
چکیده

The catalytic (C) subunit of PKA was the first protein kinase structure to be solved, and it continues to serve as the prototype for the protein kinase superfamily. In contrast, by comparing many active and inactive kinases, we developed a novel 'spine' concept where every active kinase is composed of two hydrophobic spines anchored to a hydrophobic F-helix. The R-spine (regulatory spine) is dynamically assembled, typically by activation loop phosphorylation, whereas the C-spine (catalytic spine) is completed by the adenine ring of ATP. In the present paper, we show how the spine concept can be applied to B-Raf, specifically to engineer a kinase-dead pseudokinase. To achieve this, we mutated one of the C-spine residues in the N-lobe (N-terminal lobe), Ala481, to phenylalanine. This mutant cannot bind ATP and is thus kinase-dead, presumably because the phenylalanine ring fills the adenine-binding pocket. The C-spine is thus fused. However, the A481F mutant is still capable of binding wild-type B-Raf and wild-type C-Raf, and dimerization with a wild-type Raf leads to downstream activation of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK. The mutant requires dimerization, but is independent of Ras and does not require enzymatic activity. By distinguishing between catalytic and scaffold functions of B-Raf, we define kinases as being bifunctional and show that, at least in some cases, the scaffold function is sufficient for downstream signalling. Since this alanine residue is one of the most highly conserved residues in the kinome, we suggest that this may be a general strategy for engineering kinase-dead pseudokinases and exploring biological functions that are independent of catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleotide-binding mechanisms in pseudokinases

Pseudokinases are classified by the lack of one or several of the highly conserved motifs involved in nucleotide (nt) binding or catalytic activity of protein kinases (PKs). Pseudokinases represent ∼10% of the human kinome and they are found in all evolutionary classes of kinases. It has become evident that pseudokinases, which were initially considered somewhat peculiar dead kinases, are impor...

متن کامل

Techniques to examine nucleotide binding by pseudokinases.

Approximately 10% of the human kinome has been classified as pseudokinases due to the absence of one or more of three motifs known to play key roles in the catalytic activities of protein kinases. Structural and functional studies are now emerging, reclassifying this 'dead' kinase family as essential signalling molecules that act as crucial modulators of signal transduction. This raises the pro...

متن کامل

Pseudokinases-remnants of evolution or key allosteric regulators?

Protein kinases provide a platform for the integration of signal transduction networks. A key feature of transmitting these cellular signals is the ability of protein kinases to activate one another by phosphorylation. A number of kinases are predicted by sequence homology to be incapable of phosphoryl group transfer due to degradation of their catalytic motifs. These are termed pseudokinases a...

متن کامل

Dawn of the dead: protein pseudokinases signal new adventures in cell biology.

Recent studies of proteins containing kinase-like domains that lack catalytic residue(s) classically required for phosphotransfer, termed pseudokinases, have uncovered important roles in cell signalling across the kingdoms of life. Additionally, mutations within pseudokinase domains are known to underlie human diseases, suggesting that these proteins may represent new and unexplored therapeutic...

متن کامل

Pseudokinase drug intervention: a potentially poisoned chalice.

Pseudokinases, the catalytically impaired component of the kinome, have recently been found to share more properties with active kinases than previously thought. In many pseudokinases, ATP binding and even some activity is preserved, highlighting these proteins as potential drug targets. In both active kinases and pseudokinases, binding of ATP or drugs in the nucleotide-binding pocket can stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2013