Pickpocket Is a DEG/ENaC Protein Required for Mechanical Nociception in Drosophila Larvae

نویسندگان

  • Lixian Zhong
  • Richard Y. Hwang
  • W. Daniel Tracey
چکیده

Highly branched class IV multidendritic sensory neurons of the Drosophila larva function as polymodal nociceptors that are necessary for behavioral responses to noxious heat (>39 degrees C) or noxious mechanical (>30 mN) stimuli. However, the molecular mechanisms that allow these cells to detect both heat and force are unknown. Here, we report that the pickpocket (ppk) gene, which encodes a Degenerin/Epithelial Sodium Channel (DEG/ENaC) subunit, is required for mechanical nociception but not thermal nociception in these sensory cells. Larvae mutant for pickpocket show greatly reduced nociception behaviors in response to harsh mechanical stimuli. However, pickpocket mutants display normal behavioral responses to gentle touch. Tissue-specific knockdown of pickpocket in nociceptors phenocopies the mechanical nociception impairment without causing defects in thermal nociception behavior. Finally, optogenetically triggered nociception behavior is unaffected by pickpocket RNAi, which indicates that ppk is not generally required for the excitability of the nociceptors. Interestingly, DEG/ENaCs are known to play a critical role in detecting gentle touch stimuli in Caenorhabditis elegans and have also been implicated in some aspects of harsh touch sensation in mammals. Our results suggest that neurons that detect harsh touch in Drosophila utilize similar mechanosensory molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balboa Binds to Pickpocket In Vivo and Is Required for Mechanical Nociception in Drosophila Larvae

The Drosophila gene pickpocket (ppk) encodes an ion channel subunit of the degenerin/epithelial sodium channel (DEG/ENaC) family. PPK is specifically expressed in nociceptive, class IV multidendritic (md) neurons and is functionally required for mechanical nociception responses. In this study, in a genome-wide genetic screen for other ion channel subunits required for mechanical nociception, we...

متن کامل

Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance.

The Drosophila tracheal system and mammalian airways are branching networks of tubular epithelia that deliver oxygen to the organism. In mammals, the epithelial Na(+) channel (ENaC) helps clear liquid from airways at the time of birth and removes liquid from the airspaces in adults. We tested the hypothesis that related Drosophila degenerin (DEG)/ENaC family members might play a similar role in...

متن کامل

The Genetic Architecture of Degenerin/Epithelial Sodium Channels in Drosophila

Degenerin/epithelial sodium channels (DEG/ENaC) represent a large family of animal-specific membrane proteins. Although the physiological functions of most family members are not known, some have been shown to act as nonvoltage gated, amiloride-sensitive sodium channels. The DEG/ENaC family is exceptionally large in genomes of Drosophila species relative to vertebrates and other insects. To elu...

متن کامل

Identification of Ppk26, a DEG/ENaC Channel Functioning with Ppk1 in a Mutually Dependent Manner to Guide Locomotion Behavior in Drosophila.

A major gap in our understanding of sensation is how a single sensory neuron can differentially respond to a multitude of different stimuli (polymodality), such as propio- or nocisensation. The prevailing hypothesis is that different stimuli are transduced through ion channels with diverse properties and subunit composition. In a screen for ion channel genes expressed in polymodal nociceptive n...

متن کامل

The Drosophila Postsynaptic DEG/ENaC Channel ppk29 Contributes to Excitatory Neurotransmission.

The protein family of degenerin/epithelial sodium channels (DEG/ENaCs) is composed of diverse animal-specific, non-voltage-gated ion channels that play important roles in regulating cationic gradients across epithelial barriers. Some family members are also enriched in neural tissues in both vertebrates and invertebrates. However, the specific neurophysiological functions of most DEG/ENaC-encod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010