Numerical solution of the Helmholtz equation with high wavenumbers

نویسندگان

  • Gang Bao
  • G. W. Wei
  • Shan Zhao
چکیده

This paper investigates the pollution effect, and explores the feasibility of a local spectral method, the discrete singular convolution (DSC) algorithm for solving the Helmholtz equation with high wavenumbers. Fourier analysis is employed to study the dispersive error of the DSC algorithm. Our analysis of dispersive errors indicates that the DSC algorithm yields a dispersion vanishing scheme. The dispersion analysis is further confirmed by the numerical results. For oneand higher-dimensional Helmholtz equations, the DSC algorithm is shown to be an essentially pollution-free scheme. Furthermore, for large-scale computation, the grid density of the DSC algorithm can be close to the optimal two grid points per wavelength. The present study reveals that the DSC algorithm is accurate and efficient for solving the Helmholtz equation with high wavenumbers. Copyright 2003 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs

In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.

متن کامل

Is the Helmholtz Equation Really Sign-Indefinite?

The usual variational (or weak) formulations of the Helmholtz equation are sign-indefinite in the sense that the bilinear forms cannot be bounded below by a positive multiple of the appropriate norm squared. This is often for a good reason, since in bounded domains under certain boundary conditions the solution of the Helmholtz equation is not unique at certain wavenumbers (those that correspon...

متن کامل

A preconditioned iterative solver for the scattering solutions of the Schrödinger equation

The Schrödinger equation defines the dynamics of quantum particles which has been an area of unabated interest in physics. We demonstrate how simple transformations of the Schrödinger equation leads to a coupled linear system, whereby each diagonal block is a high frequency Helmholtz problem. Based on this model, we derive indefinite Helmholtz model problems with strongly varying wavenumbers. W...

متن کامل

Multigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics

We study methods for the numerical solution of the Helmholtz equation for twodimensional applications in geophysics. The common framework of the iterative methods in our study is a combination of an inner iteration with a geometric multigrid method used as a preconditioner and an outer iteration with a Krylov subspace method. The preconditioning system is based on either a pure or shifted Helmh...

متن کامل

Sound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length

   In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003