2 00 5 A note on monomial ideals 1 Margherita Barile

نویسنده

  • Margherita Barile
چکیده

We show that the number of elements generating a squarefree monomial ideal up to radical can always be bounded above in terms of the number of its minimal monomial generators and the maximal height of its minimal primes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 1 Se p 20 05 Certain minimal varieties are set - theoretic complete intersections

We present a class of homogeneous ideals which are generated by monomials and binomials of degree two and are set-theoretic complete intersections. This class includes certain reducible varieties of minimal degree and, in particular, the presentation ideals of the fiber cone algebras of monomial varieties of codimension two.

متن کامل

Determinantal ideals and monomial curves in the three-dimensional space

We show that the defining ideal of every monomial curve in the affine or projective three-dimensional space can be set-theoretically defined by three binomial equations, two of which set-theoretically define a determinantal ideal generated by the 2-minors of a 2× 3 matrix with monomial entries.

متن کامل

On ideals generated by monomials and one binomial

We determine, in a polynomial ring over a field, the arithmetical rank of certain ideals generated by a set of monomials and one binomial.

متن کامل

A pr 2 00 5 A note on Veronese varieties 1

We show that for every prime p, there is a class of Veronese varieties which are set-theoretic complete intersections if and only if the ground field has characteristic p.

متن کامل

A note on the edge ideals of Ferrers graphs

We determine the arithmetical rank of every edge ideal of a Ferrers graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005