Linear interpolation and joint model fitting of experimental transiograms for Markov chain simulation of categorical spatial variables

نویسندگان

  • Weidong Li
  • Chuanrong Zhang
چکیده

Key Laboratory of Subtropical Agriculture Resource and Environment, Ministry of Agriculture, College of Resource and Environment, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Resource and Environmental Information Science and Engineering, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Geography and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Markov Chain Approach for Conditional Simulation of Categorical Variables from Grid Samples

Complex categorical variables are usually classified into many classes with interclass dependencies, which conventional geostatistical methods have difficulties to incorporate. A two-dimensional Markov chain approach has emerged recently for conditional simulation of categorical variables on line data, with the advantage of incorporating interclass dependencies. This paper extends the approach ...

متن کامل

Transiogram: A spatial relationship measure for categorical data

Categorical geographical variables are normally classified into multinomial classes which are mutually exclusive and visualized as area-class maps. Typical categorical variables such as soil types and land cover classes are multinomial and exhibit complex interclass relationships. Interclass relationships may include three situations: cross-correlation (i.e. interdependency), neighbouring situa...

متن کامل

Modeling experimental cross-transiograms of neighboring landscape categories with the gamma distribution

Effectively fitting the major features of experimental transiograms (or variograms) is crucial in characterizing spatial patterns and reproducing them in geostatistical simulations. Landscape patterns usually tend to contain neighboring structures. The experimental cross-transiograms of frequent neighboring landscape categories normally demonstrate apparent peaking features at low lag distances...

متن کامل

Optimal Interpolation and the Appropriateness of Cross-Validating Variogram in Spatial Generalized Linear Mixed Models

In this work, we consider some computational issues related to the minimum mean-squared error (MMSE) prediction of non-Gaussian variables under a spatial generalized linear mixed model (GLMM). This model has been used to model spatial non-Gaussian variables by Diggle et al. (1998) and Zhang (2002), under which MMSE prediction of non-Gaussian variables can be computed. Since the MMSE prediction ...

متن کامل

Bayesian Density Regression through Projections

We explore a Bayesian density regression model driven by linear projections of covariates. This offers an alternative to variable selection and provides the best linear compression of covariates for predicting a response in a regression setting. We provide a detailed construction of our probabilistic model based on smooth Gaussian processes and uniformly distributed linear subspaces. We prove p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Geographical Information Science

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2010