Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts.
نویسندگان
چکیده
In an established swine model of severe left ventricular (LV) hypertrophy (LVH), the bioenergetic and functional consequences of transplanting autologous mesenchymal stem cells (MSCs) overexpressing vascular endothelial growth factor (VEGF-MSCs) into the LV were evaluated; transplantation was accomplished by infusion of VEGF-MSCs into the interventricular cardiac vein. Specifically, the hypertrophic response to aortic banding was compared in seven pigs treated with 30 million VEGF-MSCs, eight pigs treated with 30 million MSCs without VEGF modification, and 19 untreated LVH pigs. Eight pigs without banding or cell transplantation (normal) were also studied. Four weeks postbanding, LV wall thickening (MRI), myocardial blood flow (MBF), high-energy phosphate levels ((31)P magnetic resonance spectroscopy), and hemodynamic measurements were obtained under basal conditions and during a catecholamine-induced high cardiac workstate (HCW). Although 9 of 19 untreated banded pigs developed clinical evidence of biventricular failure, no MSCs-treated animal developed heart failure. MSCs engraftment was present in both cell transplant groups, and both baseline and HCW MBF values were significantly increased in hearts receiving VEGF-MSCs compared with other groups (P < 0.05). During HCW, cardiac inotropic reserve (defined as the percent increase of rate pressure product at HCW relative to baseline) was normal in the VEGF-MSCs group and significantly decreased in all other banded groups. Additionally, during HCW, the myocardial energetic state [reflected by the phosphocreatine-to-ATP ratio (PCr/ATP)] of VEGF-MSCs-treated hearts remained stable, whereas in all other groups, PCr/ATP decreased significantly from baseline values (P < 0.05, each group). Myocardial von Willebrand factor and VEGF mRNA expressions and myocardial capillary density were significantly increased in VEGF-MSCs-treated hearts (P < 0.05). Hence, in the pressure-overloaded LV, transplantation of VEGF-MSCs prevents LV decompensation, induces neovascularization, attenuates hypertrophy, and improves MBF, myocardial bioenergetic characteristics, and contractile performance.
منابع مشابه
CALL FOR PAPERS Regulation and Function of Stem Cells in the Cardiovascular System Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts
Wang, Xiaohong, Qingsong Hu, Abdul Mansoor, Joseph Lee, Zongli Wang, TeChung Lee, and Arthur H. L. From, and Jianyi Zhang. Bioenergetic and functional consequences of stem cell-based VEGF delivery in pressure-overloaded swine hearts. Am J Physiol Heart Circ Physiol 290: H1393–H1405, 2006. First published December 30, 2005; doi:10.1152/ajpheart.00871.2005.—In an established swine model of severe...
متن کاملBioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells.
RATIONALE The mechanism by which endogenous progenitor cells contribute to functional and beneficial effects in stem cell therapy remains unknown. OBJECTIVE Utilizing a novel (31)P magnetic resonance spectroscopy-2-dimensional chemical shift imaging method, this study examined the heterogeneity and bioenergetic consequences of postinfarction left ventricular (LV) remodeling and the mechanisms...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملCell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملBioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling.
BACKGROUND The present study examined whether transplantation of adherent bone marrow-derived stem cells, termed pMultistem, induces neovascularization and cardiomyocyte regeneration that stabilizes bioenergetic and contractile function in the infarct zone and border zone (BZ) after coronary artery occlusion. METHODS AND RESULTS Permanent left anterior descending artery occlusion in swine cau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 290 4 شماره
صفحات -
تاریخ انتشار 2006