A data-driven Bayesian sampling scheme for unsupervised image segmentation
نویسندگان
چکیده
A Bayesian scheme for fully unsupervised still image segmentation is described. The likelihood function is constructed by assuming that the grey level at each pixel site is a realization of a Gaussian random variable of unknown parameters, there being an uncertain number of distinct Gaussian classes in the image. Spatial connectivity between pixels is encouraged via a Markov random field prior. The task of identifying the model parameters and recovering the underlying class label at each site (i.e. segmentation) is accomplished using a novel reversible jump Markov chain Monte Carlo (MCMC) scheme. This scheme explores the space of possible segmentations via proposals that are driven by the actual image realization—so-called data-driven proposals. The aim is to (i) induce good mixing in regions of high probability, and (ii) to optimize the acceptance probability of the proposals. A key development is a stochastic version of a recursive labeling algorithm which has been used in previous work for fast image region splitting. In the current stochastic context, it yields fast and effective split and merge proposals. The performance of the novel MCMC scheme is illustrated in simulation.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملSTRUCTURED GRAPHICAL MODELS FOR UNSUPERVISED IMAGE SEGMENTATION By KITTIPAT KAMPA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy STRUCTURED GRAPHICAL MODELS FOR UNSUPERVISED IMAGE SEGMENTATION By Kittipat Kampa Dec 2011 Chair: Jose C. Principe Major: Electrical and Computer Engineering In the dissertation, we seek the following goals: (1) to come up with a probabi...
متن کاملBayesian Unsupervised Learning for Source Separation with Mixture of Gaussians Prior
This paper considers the problem of source separation in the case of noisy instantaneous mixtures. In a previous work [1], sources have been modeled by a mixture of Gaussians leading to an hierarchical Bayesian model by considering the labels of the mixture as i.i.d hidden variables. We extend this modelization to incorporate a Markovian structure for the labels. This extension is important for...
متن کاملUnsupervised Bayesian image segmentation using wavelet-domain hidden Markov models
In this paper, we study unsupervised image segmentation using wavelet-domain hidden Markov models (HMMs). We first review recent supervised Bayesian image segmentation algorithms using wavelet-domain HMMs. Then, a new unsupervised segmentation approach is developed by capturing the likelihood disparity of different texture features with respect to wavelet-domain HMMs. The K-mean clustering is u...
متن کامل