Feedforward neural network design with tridiagonal symmetry constraints
نویسندگان
چکیده
This paper introduces a pruning algorithm with tridiagonal symmetry constraints for feedforward neural network design. The algorithm uses a reeection transform applied to the input{hidden weight matrix in order to reduce it to its tridiagonal form. The designed FANN structures obtained by applying the proposed algorithm are compact and symmetrical. Therefore, they are well suited for eecient hardware and software implementations. Moreover, the number of the FANN parameters is reduced without a signiicant loss in performance. We illustrate the complexity and performance of the proposed algorithm by applying it as a solution to a nonlinear regression problem. We also compare the results of our proposed algorithm with those of the Optimal Brain Damage algorithm.
منابع مشابه
Shape optimization of impingement and film cooling holes on a flat plate using a feedforward ANN and GA
Numerical simulations of a three-dimensional model of impingement and film cooling on a flat plate are presented and validated with the available experimental data. Four different turbulence models were utilized for simulation, in which SST had the highest precision, resulting in less than 4% maximum error in temperature estimation. A simplified geometry with periodic boundary conditions is de...
متن کاملSymmetry constraints for feedforward network models of gradient systems
This paper concerns the use of a priori information on the symmetry of cross differentials available for problems that seek to approximate the gradient of a differentiable function. We derive the appropriate network constraints to incorporate the symmetry information, show that the constraints do not reduce the universal approximation capabilities of feedforward networks, and demonstrate how th...
متن کاملSymmetries and discriminability in feedforward network architectures
This paper investigates the effects of introducing symmetries into feedforward neural networks in what are termed symmetry networks. This technique allows more efficient training for problems in which we require the output of a network to be invariant under a set of transformations of the input. The particular problem of graph recognition is considered. In this case the network is designed to d...
متن کاملSelecting Accurate, Robust, and Minimal Feedforward Neural Networks
Accuracy, robustness, and minimality are fundamental issues in system-level design. Such properties are generally associated with constraints limiting the feasible model space. The paper focuses on the optimal selection of feedforward neural networks under the accuracy, robustness, and minimality constraints. Model selection, with respect to accuracy, can be carried out within the theoretical f...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 48 شماره
صفحات -
تاریخ انتشار 2000