Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network.

نویسندگان

  • H P Chan
  • B Sahiner
  • N Petrick
  • M A Helvie
  • K L Lam
  • D D Adler
  • M M Goodsitt
چکیده

We investigated the feasibility of using texture features extracted from mammograms to predict whether the presence of microcalcifications is associated with malignant or benign pathology. Eighty-six mammograms from 54 cases (26 benign and 28 malignant) were used as case samples. All lesions had been recommended for surgical biopsy by specialists in breast imaging. A region of interest (ROI) containing the microcalcifications was first corrected for the low-frequency background density variation. Spatial grey level dependence (SGLD) matrices at ten different pixel distances in both the axial and diagonal directions were constructed from the background-corrected ROI. Thirteen texture measures were extracted from each SGLD matrix. Using a stepwise feature selection technique, which maximized the separation of the two class distributions, subsets of texture features were selected from the multi-dimensional feature space. A backpropagation artificial neural network (ANN) classifier was trained and tested with a leave-one-case-out method to recognize the malignant or benign microcalcification clusters. The performance of the ANN was analysed with receiver operating characteristic (ROC) methodology. It was found that a subset of six texture features provided the highest classification accuracy among the feature sets studied. The ANN classifier achieved an area under the ROC curve of 0.88. By setting an appropriate decision threshold, 11 of the 28 benign cases were correctly identified (39% specificity) without missing any malignant cases (100% sensitivity) for patients who had undergone biopsy. This preliminary result indicates that computerized texture analysis can extract mammographic information that is not apparent by visual inspection. The computer-extracted texture information may be used to assist in mammographic interpretation, with the potential to reduce biopsies of benign cases and improve the positive predictive value of mammography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Analysis and Artificial Neural Network for Detection of Clustered Microcalcifications on Mammograms

Clustered microcalcifications on X-ray mammograms are an important sign in the detection of breast cancer. This paper quantitatively describes the usefulness of texture analysis methods for the detection of clustered microcalcifications on digitized mammograms. Comparative studies of texture analysis methods are performed for the proposed texture analysis method, called the surrounding region d...

متن کامل

Computerized classification of microcalcifications on mammograms using fuzzy logic and genetic algorithm

The purpose of this study is to develop a computerized scheme for the discrimination between benign and malignant clustered microcalcifications that would aid radiologists in interpreting mammograms. In our scheme, microcalcifications in regions of interest (ROIs) are detected by using morphological filter. Then, four feature values including the total number, mean area, mean circularity and me...

متن کامل

Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging

Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...

متن کامل

Breast mass classification on mammograms using radial local ternary patterns

Textural features can be useful in differentiating between benign and malignant breast lesions on mammograms. Unlike previous computerized schemes, which relied largely on shape and margin features based on manual contours of masses, textural features can be determined from regions of interest (ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based fea...

متن کامل

Breast Cancer Detection Using Mammography

The presence of microcalcification clusters in mammograms contributes evidence for the detection of early stages of cancer. In this paper, a low-cost and high-speed neural network based breast cancer detection algorithm is presented. The microcalcifications are extracted with an adaptive neural network that is trained with cancer/malignant and normal/benign breast mammograms and a best accuracy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 1997