QCM-D Monitoring of Binding-Induced Conformational Change of Calmodulin

نویسنده

  • Hyun J Kwon
چکیده

Understanding conformational changes are important when studying a protein such as calmodulin (CaM), which activates various target enzymes and regulates numerous physiological functions. CaM is a highly flexible protein that can transitorily adopt various conformations. A quartz crystal microbalance with dissipation (QCM-D) sensor was used to study binding-induced conformational changes of surface-immobilized CaM. Structural changes of CaM were evaluated using the Voigt’s viscoelastic model with frequency (ΔF) and dissipation change (ΔD). When Apo-CaM layer was incubated in 0.1 mM Ca2+ solution, the layer decreased by approximately 0.56 nm, due to the release of coupled water molecules and conformational change. The application of CaM itself also caused a significantly more compact layer, supporting previous findings that CaM dimerization forms a collapsed structure that exposes a hydrophobic tunnel. The binding characteristics of CaM with peptides derived from proteins in a signal transduction pathway also demonstrated diverse biophysical properties of the CaM complexes. Each peptide showed a unique ΔF/ΔD pattern indicating versatility of CaM configuration to favorably adjust to each target molecule. The study demonstrates that the QCM-D sensor is capable of simultaneously studying binding affinity and plasticity of protein configuration for target binding. The CaM data obtained on hydrated protein layer thickness is complementary to configuration measurements of a single CaM molecule. QCM-D Monitoring of Binding-Induced Conformational Change of Calmodulin

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melittin binding causes a large calcium-dependent conformational change in calmodulin.

The interaction between calmodulin and its target protein is a key step in many calcium-regulated cellular functions. Melittin binds tightly to calmodulin in the presence of calcium and is a competitive inhibitor of calmodulin function. Using melittin as a model for the target peptide of calmodulin, we have found a large Ca2+-dependent conformational change of calmodulin in solution induced by ...

متن کامل

Conformational Changes of Calmodulin on Calcium and Peptide Binding Monitored by Film Bulk Acoustic Resonators

Film bulk acoustic resonators (FBAR) are mass sensitive, label-free biosensors that allow monitoring of the interaction between biomolecules. In this paper we use the FBAR to measure the binding of calcium and the CaMKII peptide to calmodulin. Because the mass of the calcium is too small to be detected, the conformational change caused by the binding process is measured by monitoring the resona...

متن کامل

Circular dichroism and 1H nuclear magnetic resonance studies on the solution and membrane structures of GAP-43 calmodulin-binding domain.

Growth-associated protein-43 (GAP-43) is believed to be palmitoylated near the N terminus and the modification is assumed to be involved in the membrane anchoring of the protein. However, GAP-43 isolated from bovine brain is not palmitoylated as shown by mass spectrometric analysis, but still retains the ability to bind phospholipids, suggesting that other parts of the molecule are involved in ...

متن کامل

Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.

Calsequestrin is an intermediate affinity, high capacity Ca(2+)-binding protein found in the lumen of the sarcoplasmic reticulum of both skeletal and cardiac muscle cells. Previous sequence analysis suggested that calsequestrin may contain a hydrophobic binding site for the drug trifluoperazine, a site shared by the calmodulin family and shown to play a role in calmodulin/calmodulin receptor in...

متن کامل

Quartz crystal microbalance studies on conformational change of polymer chains at interface.

The conformation of polymers at interface profoundly influences the interfacial properties. Quartz crystal microbalance with dissipation (QCM-D) is a newly developed technique to detect polymer behavior at interface in real time. In this article, we mainly review our QCM-D studies. Our focus is on temperature induced collapse and swelling of tethered polymer chains, pancake-to-brush transition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015