“ Finite Element Simulation of Ring Expansion and Fragmentation ”

نویسندگان

  • A. Pandolfi
  • P. Krysl
چکیده

The expanding ring test of Grady and Benson [20] is taken as a convenient yet challenging validation problem for assessing the delity of cohesive models in situations involving ductile dynamical fracture. Attention has been rescricted to 1100-0 aluminum samples. Fracture has been modelled by recourse to an irreversible cohesive law embedded into cohesive elements. The nite element model is three dimensional and fully lagrangian. In order to limit the extent of deformation-induced distortion, we resort to continuous adaptive remeshing. The cohesive behavior of the material is assumed to be rate independent and, consequently, all rate e ects predicted by the calculations are due to inertia and the rate dependency in plastic deformation. The numerical simulations are revealed to be highly predictive of a number of observed features, including: the number of dominant and arrested necks; the fragmentation patterns; the dependence of the number of fragments and the fracture strain on the expansion speed; and the distribution of fragment sizes at xed expansion speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture

The expanding ring test of Grady and Benson (1983) is taken as a convenient yet challenging validation problem for assessing the fidelity of cohesive models in situations involving ductile dynamical fracture. Attention has been restricted to 1100-0 aluminum samples. Fracture has been modelled by recourse to an irreversible cohesive law embedded into cohesive elements. The finite element model i...

متن کامل

Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization

A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...

متن کامل

Opto-acoustical filter based on phoxonic crystal ring resonator

In this paper, a phoxonic crystal structure is designed that shows a complete phononic and photonic ban gap and is capable to guide the optical waves with transverse magnetic polarization and acoustic waves. The materials used in the structure are nylon and molybdenum, which have suitable refractive index and elastic constant. Also, it is worth of noting that the filling factor is 28% for the p...

متن کامل

Experimental and Finite Element Analyses of the Hydrostatic Cyclic Expansion Extrusion (HCEE) Process with Back-Pressure

It is generally known that severe plastic deformation processes with back pressure not only apply higher hydrostatic stress and more deformation compared to what a regular process can apply to a workpiece but also prevent surface defects in the workpiece during the process. Hydrostatic cyclic expansion extrusion (HCEE) was developed recently for processing long ultrafine-grained metals and allo...

متن کامل

The New Design and Simulation of an Optical Add Drop Filter Based On Hexagonal Photonic Crystal Single Ring Race Track Resonator

In this paper, using annular resonator we have designed an adding and dropping filter light based ontwo-dimensional photonic crystals. The shape of ring resonator filter adding and dropping that wehave proposed is Race Track. This filter has a hexagonal lattice structure of silicon bars withrefractive index 3/46 that is located in the context of air with refractive index 1. Transmissionefficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999