Decoding Poisson Spike Trains by Gaussian Filtering

نویسنده

  • Sidney R. Lehky
چکیده

The temporal waveform of neural activity is commonly estimated by low-pass filtering spike train data through convolution with a gaussian kernel. However, the criteria for selecting the gaussian width sigma are not well understood. Given an ensemble of Poisson spike trains generated by an instantaneous firing rate function lambda(t), the problem was to recover an optimal estimate of lambda(t) by gaussian filtering. We provide equations describing the optimal value of sigma using an error minimization criterion and examine how the optimal sigma varies within a parameter space defining the statistics of inhomogeneous Poisson spike trains. The process was studied both analytically and through simulations. The rate functions lambda(t) were randomly generated, with the three parameters defining spike statistics being the mean of lambda(t), the variance of lambda(t), and the exponent alpha of the Fourier amplitude spectrum 1/f(alpha) of lambda(t). The value of sigma(opt) followed a power law as a function of the pooled mean interspike interval I, sigma(opt) = aI(b), where a was inversely related to the coefficient of variation C(V) of lambda(t), and b was inversely related to the Fourier spectrum exponent alpha. Besides applications for data analysis, optimal recovery of an analog signal waveform lambda(t) from spike trains may also be useful in understanding neural signal processing in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical analysis of neural data: Maximum a posteriori techniques for decoding spike trains

2 Maximum a posteriori neural decoding 3 2.1 Gaussian approximations to the posterior p(~x|D) are tractable and useful . . 4 2.1.1 Moment-matching provides an alternative method for constructing the Gaussian approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 MAP decoding examples: corre...

متن کامل

Distortion of Neural Signals by Spike Coding

Analog neural signals must be converted into spike trains for transmission over electrically leaky axons. This spike encoding and subsequent decoding leads to distortion. We quantify this distortion by deriving approximate expressions for the mean square error between the inputs and outputs of a spiking link. We use integrate-and-fire and Poisson encoders to convert naturalistic stimuli into sp...

متن کامل

Sequential Monte Carlo Point-Process Estimation of Kinematics from Neural Spiking Activity for Brain-Machine Interfaces

Many decoding algorithms for brain machine interfaces' (BMIs) estimate hand movement from binned spike rates, which do not fully exploit the resolution contained in spike timing and may exclude rich neural dynamics from the modeling. More recently, an adaptive filtering method based on a Bayesian approach to reconstruct the neural state from the observed spike times has been proposed. However, ...

متن کامل

Bayesian Population Decoding of Spiking Neurons

The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studi...

متن کامل

A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.

The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2010