Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79.
نویسندگان
چکیده
Phenazines, including pyocyanin and iodonin, are biologically active compounds that are believed to confer producing organisms with a competitive growth advantage, and also are thought to be virulence factors in certain diseases including cystic fibrosis. The basic, tricyclic phenazine ring system is synthesized in a series of poorly characterized steps by enzymes encoded in a seven-gene cistron in Pseudomonas and other organisms. Despite the biological importance of these compounds, and our understanding of their mode of action, the biochemistry and mechanisms of phenazine biosynthesis are not well resolved. Here we report the 1.8 A crystal structure of PhzF, a key enzyme in phenazine biosynthesis, solved by molecular replacement. PhzF is structurally similar to the lysine biosynthetic enzyme diaminopimelate epimerase, sharing an unusual fold consisting of two nearly identical domains with the active site located in an occluded cleft between the domains. Unlike diaminopimelate epimerase, PhzF is a dimer in solution. The two apparently independent active sites open toward opposite sides of the dimer and are occupied by sulfate ions in the structure. In vitro experiments using a mixture of purified PhzF, -A, -B, and -G confirm that phenazine-1-carboxylic acid (PCA) is readily produced from trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) without aid of other cellular factors. PhzA, -B, and -G have no activity toward DHHA. However, in the presence of PhzF, individually or in combinations, they accelerate the formation of PCA from DHHA and therefore appear to function after the action of PhzF. Surprisingly, PhzF is itself capable of producing PCA, albeit slowly, from DHHA. These observations suggest that PhzF catalyzes the initial step in the conversion of DHHA to PCA, probably via a rearrangement reaction yielding the more reactive 3-oxo analogue of DHHA, and that subsequent steps can occur spontaneously. A hypothetical model for how DHHA binds to the PhzF active site suggests that Glu45 and Asp208 could act as general acid-base catalysts in a rearrangement reaction. Given that four reactions lie between DHHA and PCA, ketone formation, ring formation, decarboxylation, and oxidation, we hypothesize that the similar PhzA and -B proteins catalyze ring formation and thus may be more than noncatalytic accessory proteins. PhzG is almost certainly an oxidase and is predicted to catalyze the final oxidation/aromatization reaction.
منابع مشابه
Structure of the phenazine biosynthesis enzyme PhzG.
PhzG is a flavin-dependent oxidase that is believed to play a role in phenazine antibiotic synthesis in various bacteria, including Pseudomonas. Phenazines are chorismic acid derivatives that provide the producing organisms, including the opportunistic pathogen P. aeruginosa, with a competitive growth advantage. Here, the crystal structures of PhzG from both P. aeruginosa and P. fluorescens sol...
متن کاملDraft Genome Sequence of the Phenazine-Producing Pseudomonas fluorescens Strain 2-79
Pseudomonas fluorescens strain 2-79, a natural isolate of the rhizosphere of wheat (Triticum aestivum L.), possesses antagonistic potential toward several fungal pathogens. We report the draft genome sequence of strain 2-79, which comprises 5,674 protein-coding sequences.
متن کاملDiversity and evolution of the phenazine biosynthesis pathway.
Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of ...
متن کاملFunctional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynth...
متن کاملContribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats.
Phenazine antibiotics produced by Pseudomonas fluorescens 2-79 and Pseudomonas aureofaciens 30-84, previously shown to be the principal factors enabling these bacteria to suppress take-all of wheat caused by Gaeumannomyces graminis var. tritici, also contribute to the ecological competence of these strains in soil and in the rhizosphere of wheat. Strains 2-79 and 30-84, their Tn5 mutants defect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 43 39 شماره
صفحات -
تاریخ انتشار 2004