Distributed Reinforcement Learning in Multi-Agent Decision Systems
نویسندگان
چکیده
Decision problems can be usually solved using systems that implement diierent paradigms. These systems may be integrated into a single distributed system, with the expectation of obtaining a group performance more satisfactory than individual performances. Such a distributed system is what we call a Multi Agent Decision System (MADES), a special kind of Multi Agent System, that integrates several heterogeneous autonomous decision systems (agents). A MADES must produce a single solution proposal for the problem instance it faces, despite the fact that its decision making is distributed, and every agent produces solution proposals according to its local view and to its idiosyncrasy. We present a distributed reinforcement algorithm for learning how to combine the decisions the agents make in a distributed way, into a single group decision (solution proposal).
منابع مشابه
Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems
This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملFrom Single-Agent to Multi-Agent Reinforcement Learning: Foundational Concepts and Methods Learning Theory Course
Interest in robotic and software agents has increased a lot in the last decades. They allow us to do tasks that we would hardly accomplish otherwise. Particularly, multi-agent systems motivate distributed solutions that can be cheaper and more efficient than centralized single-agent ones. In this context, reinforcement learning provides a way for agents to compute optimal ways of performing the...
متن کاملMulti-agent learning in mobilized ad-hoc networks
In large, distributed systems such as mobilized ad-hoc networks, centralized learning of routing or movement policies may be impractical. We need to employ multi-agent learning algorithms that can learn independently, without the need for extensive coordination. Using only a simple coordination signals such as a global reward value, we show that reinforcement learning methods can be used to con...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998