Relationships Between Nondeterministic and Deterministic Tape Complexities

نویسنده

  • Walter J. Savitch
چکیده

This paper first proves the Savitch Theorem: any nondeterminstic L(n)− tape bounded Turing Machine can be simulated by a deterministic [L(n)]− tape bounded Turing machine, provided L(n) ≥ log2n. Then as an attempt to answer the following question: “Given a nondeterministic tape bounded Turing machine which accepts set A, how much additional storage does a deterministic Turing machine require to recognize A?”, the paper indicates that showing whether there exists any set of strings that is accepted by some nondeterministic Turing machine within storage L(n) and some deterministic Turing machine within storage L(n) is equvilent of showing the set of thread-able maze could be accepted by some deterministic Turing machine within storage L(n) = log2(n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descriptive Complexity: A Logicians Approach to Computation

structures, North Holland, 1974. [19] S. Patnaik and N. Immerman, Dyn-FO: A parallel, dynamic complexity class, ACM Symp. Principles Database Systems (1994), 210–221. [20] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. System Sci. 4 (1970), 177–192. [21] R. Szelepcsenyi, The method of forced enumeration for nondeterministic automata, Acta I...

متن کامل

Combinatorial Lower Bound Arguments for Deterministic and Nondeterministic Turing Machines

We introduce new techniques for proving quadratic lower bounds for deterministic and nondeterministic 1-tape Turing machines (all considered Turing machines have an additional one-way input tape). In particular, we derive for the simulation of 2-tape Turing machines by 1-tape Turing machines an optimal quadratic lower bound in the deterministic case and a nearly optimal lower bound in the nonde...

متن کامل

Three-Way Two-Dimensional Deterministic Finite Automata with Rotated Inputs

Inoue et al. introduced an automaton on a twodimensional tape, which decides acceptance or rejection of an input tape by scanning the tape from various sides by various automata which move one way, and investigated the accepting power of such an automaton. This paper continues the investigation of this type of automata, especially, ∨-type automata (obtained by combining four three-way two-dimen...

متن کامل

R 69 - 18 Multitape One - Way

A multitape one-way nonwriting automaton (MONA) is a finite state machine with a finite number of one-way input tapes which are advanced independently. This paper summarizes closure properties and decision problems of both deterministic and nondeterministic varieties. The family of n-ary word relations defined by deterministic (nondeterministic) n-tape MONA's is called D5(NV). Clearly D1 = NJ =...

متن کامل

Tape Bounds for Some Subclasses of Deterministic Context-Free Languages

There are several interesting observations to be made concerning the tape complexity of context-free languages. An early result given by Lewis et al. (1965) is that every context-free language can be recognized by an off-line deterministic Turing machine of O((log n) 2) tape complexity. This is still the best result known. Sudborough (1975) shows that if all linear context-free languages can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1970