Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry
نویسندگان
چکیده
This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.
منابع مشابه
Quasi-distributed strain sensing with white-light interferometry: a novel approach.
An optical fiber ring is used to generate multiple reference waves in a multiplexed fiber-optic Michelson-type sensor array. The array consists of N sensing segments connected in series along a single optical fiber path and is interrogated with a white-light interferometric technique. Experimental results with a two-sensor array are presented.
متن کاملFiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)
The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...
متن کاملTapered Optical Fiber Coated with ZnO Nanorods for Detection of Ethanol Concentration in Water
This work presents ZnO nanorods coated multimode optical fiber sensing behavior in response to ethanol solution. The sensor operates based on modulation of light intensity which arises from manipulation of light interaction with the ambient environment in sensing region. For this purpose, two steps are experimentally applied here; etching and then coating fiber with ZnO nanorods to provide stro...
متن کاملFrequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique
Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI). This technique uses a continuous-wave light source, an optical frequency shifter, and a slow d...
متن کاملFiber Optic Interferometric Devices
Fiber optic interferometry can be broadly explained as the techniques that utilize the fundamental principles of optical interference to measure physical sample properties or detect changes via sensing systems that are partially or completely realized using fiber optic components. While the field of optical interference dates back to second half of seventeenth century, the advent of fiber optic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016