Computation of Large Invariant Subspaces Using Polynomial Filtered Lanczos Iterations with Applications in Density Functional Theory

نویسندگان

  • Constantine Bekas
  • Effrosini Kokiopoulou
  • Yousef Saad
چکیده

The most expensive part of all electronic structure calculations based on density functional theory lies in the computation of an invariant subspace associated with some of the smallest eigenvalues of a discretized Hamiltonian operator. The dimension of this subspace typically depends on the total number of valence electrons in the system, and can easily reach hundreds or even thousands when large systems with many atoms are considered. At the same time, the discretization of Hamiltonians associated with large systems yields very large matrices, whether with planewave or real-space discretizations. The combination of these two factors results in one of the most significant bottlenecks in computational materials science. In this paper we show how to efficiently compute a large invariant subspace associated with the smallest eigenvalues of a symmetric/Hermitian matrix using polynomially filtered Lanczos iterations. The proposed method does not try to extract individual eigenvalues and eigenvectors. Instead, it constructs an orthogonal basis of the invariant subspace by combining two main ingredients. The first is a filtering technique to dampen the undesirable contribution of the largest eigenvalues at each matrix-vector product in the Lanczos algorithm. This technique employs a well-selected low pass filter polynomial, obtained via a conjugate residual-type algorithm in polynomial space. The second ingredient is the Lanczos algorithm with partial reorthogonalization. Experiments are reported to illustrate the efficiency of the proposed scheme compared to state-of-the-art implicitly restarted techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial filtered Lanczos iterations with applications in Density Functional Theory

The most expensive part of all Electronic Structure Calculations based on Density Functional Theory, lies in the computation of an invariant subspace associated with some of the smallest eigenvalues of a discretized Hamiltonian operator. The dimension of this subspace typically depends on the total number of valence electrons in the system, and can easily reach hundreds or even thousands when l...

متن کامل

Cucheb: A GPU implementation of the filtered Lanczos procedure

This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly ...

متن کامل

A Gpu Implementation of the Filtered Lanczos

This paper describes a graphics processing unit (GPU) implementation of the Filtered Lanczos Procedure for the solution of large, sparse, symmetric eigenvalue problems. The Filtered Lanczos Procedure uses a carefully chosen polynomial spectral transformation to accelerate the convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particula...

متن کامل

Abstract Submitted for the MAR16 Meeting of The American Physical Society Spectral Gauss quadrature method with subspace interpolation for Kohn-Sham Density functional theory

Submitted for the MAR16 Meeting of The American Physical Society Spectral Gauss quadrature method with subspace interpolation for Kohn-Sham Density functional theory XIN WANG, US Army Rsch Lab Aberdeen — Algorithms with linear-scaling (O(N )) computational complexity for Kohn-Sham density functional theory (K-S DFT) is crucial for studying molecular systems beyond thousands of atoms. Of the O(N...

متن کامل

Perturbation, Computation and Refinement of Invariant Subspaces for Matrix Polynomials

Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of invariant subspac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008