Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro.

نویسندگان

  • Farzana Perwad
  • Martin Y H Zhang
  • Harriet S Tenenhouse
  • Anthony A Portale
چکیده

Fibroblast growth factor-23 (FGF-23) is critical to the pathogenesis of a distinct group of renal phosphate wasting disorders: tumor-induced osteomalacia, X-linked hypophosphatemia, and autosomal dominant and autosomal recessive hypophosphatemic rickets. Excess circulating FGF-23 is responsible for their major phenotypic features which include hypophosphatemia due to renal phosphate wasting and inappropriately low serum 1,25(OH)2D concentrations. To characterize the effects of FGF-23 on renal sodium-phosphate (Na/P(i)) cotransport and vitamin D metabolism, we administered FGF-23(R176Q) to normal mice. A single injection (0.33 microg/g body wt) induced significant hypophosphatemia, 20 and 29% decreases (P < 0.001) in brush-border membrane (BBM) Na/Pi cotransport at 5 and 17 h after injection, respectively, and comparable decreases in the abundance of type IIa Na/P(i) cotransporter protein in BBM. Multiple injections (6, 12, and 24 mug/day for 4 days) induced dose-dependent decreases (38, 63, and 75%, respectively) in renal abundance of 1alpha-hydroxylase mRNA (P < 0.05). To determine whether FGF-23(R176Q) exerts a direct action on 1alpha-hydroxylase gene expression, we examined its effects in cultured human (HKC-8) and mouse (MCT) renal proximal tubule cells. FGF-23(R176Q) (1 to 10 ng/ml) induced a dose-dependent decrease in 1alpha-hydroxylase mRNA with a maximum suppression of 37% (P < 0.05). Suppression was detectable after 6 h of exposure and maximal after 21 h. In MCT cells, FGF-23(R176Q) suppressed 1alpha-hydroxylase mRNA and activated the ERK1/2 signaling pathway. The MAPK inhibitor PD98059 effectively abolished FGF-23-induced suppression of 1alpha-hydroxylase mRNA by blocking signal transduction via ERK1/2. These novel findings provide evidence that FGF-23 directly regulates renal 1alpha-hydroxylase gene expression via activation of the ERK1/2 signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin D--metabolism in the human breast cancer cell line MCF-7.

BACKGROUND The three main vitamin D metabolizing enzymes, vitamin D3-25-hydroxylase (25-OHase, 25-hydroxylase), 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase, 1alpha-hydroxylase) and 25-hydroxyvitamin D3-24-hydroxylase (24-OHase, 24-hydroxylase), have been described in malignant breast tissue. This in vitro study aimed to obtain more information regarding the regulation of these enzymes...

متن کامل

Effects of Single Vitamin D3 Injection (200,000 Units) on Serum Fibroblast Growth Factor 23 and Sclerostin Levels in Subjects with Vitamin D Deficiency

BACKGROUND Vitamin D deficiency remains common in all age groups and affects skeletal and non-skeletal health. Fibroblast growth factor 23 is a bone-derived hormone that regulates phosphate and 1,25-dihydroxyvitamin D homeostasis as a counter regulatory factor. 1,25-Dihydroxyvitamin D stimulates fibroblast growth factor 23 synthesis in bone, while fibroblast growth factor 23 suppresses 1,25-dih...

متن کامل

Klotho Protein,A Biomarker for AKI

Klotho is an anti-aging single-pass membrane protein that is mainly produced in the kidney. The level of soluble klotho decreases with age and the klotho gene is associated with an increased risk of age-related diseases, such as diabetes, skin atrophy, chronic kidney disease, ataxia and cancer. The klotho gene is composed of five exons and encodes a membrane glycoprotein located in the plasma ...

متن کامل

Parathyroid hormone decreases renal vitamin D receptor expression in vivo.

The vitamin D receptor (VDR) is a nuclear transcription factor responsible for mediating the biological activities of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Renal and parathyroid gland VDR content is an important factor in calcium homeostasis, vitamin D metabolism, and the treatment of secondary hyperparathyroidism and renal osteodystrophy. In these tissues, VDR expression is highly regu...

متن کامل

Hypergravity modulates vitamin D receptor target gene mRNA expression in mice.

The possibility of pathological calcium metabolism is a critical health concern introduced by long-term space travel. Because vitamin D plays an important role in calcium homeostasis, we evaluated the effects of hypergravity on the expression of genes involved in vitamin D and calcium metabolism in ICR mice. When exposed to 2G hypergravity for 2 days, the mRNA expression of renal 25-hydroxyvita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 5  شماره 

صفحات  -

تاریخ انتشار 2007