A multi-dimensional approach to the construction and enumeration of Golay complementary sequences

نویسندگان

  • Frank Fiedler
  • Jonathan Jedwab
  • Matthew G. Parker
چکیده

We argue that a Golay complementary sequence is naturally viewed as a projection of a multidimensional Golay array. We present a three-stage process for constructing and enumerating Golay array and sequence pairs: 1. construct suitable Golay array pairs from lower-dimensional Golay array pairs; 2. apply transformations to these Golay array pairs to generate a larger set of Golay array pairs; and 3. take projections of the resulting Golay array pairs to lower dimensions. This process greatly simplifies previous approaches, by separating the construction of Golay arrays from the enumeration of all possible projections of these arrays to lower dimensions. We use this process to construct and enumerate all 2-phase Golay sequences of length 2 obtainable under any known method, including all 4-phase Golay sequences obtainable from the length 16 examples given in 2005 by Li and Chu [12].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Golay complementary array pairs

Constructions and nonexistence conditions for multi-dimensional Golay complementary array pairs are reviewed. A construction for a d-dimensional Golay array pair from a (d+1)-dimensional Golay array pair is given. This is used to explain and expand previously known constructive and nonexistence results in the binary case.

متن کامل

A new source of seed pairs for Golay sequences of length 2m

In 2007 Jedwab and Parker proposed [10] that the natural viewpoint for a Golay complementary sequence is as a projection of a multi-dimensional Golay array. In 2008 Fiedler, Jedwab and Parker [5] used this viewpoint to show how to construct and enumerate all known 2-phase Golay sequences of length 2, starting from two sources of Golay seed pairs. The first source of seed pairs is the trivial Go...

متن کامل

Construction of 16-QAM OFDM Codes with Reduced Peak to Average Power Ratio using Golay Complementary Sequences

OFDM is a powerful multicarrier transmission technique used extensively for wireless applications. High PAPR is one of the deleterious problems of OFDM. This paper reviews basic OFDM system and PAPR problem associated with it. Also, the construction of M-QAM particularly 16-QAM sequences using QPSK Golay sequences over 4  is conferred. It is elucidated that a 16-QAM constellation can be writte...

متن کامل

Golay Sequences for DS CDMA Applications

Golay complementary sequences, often referred to as Golay pairs, are characterised by the property that the sum of their aperiodic autocorrelation functions equals to zero, except for the zero shift. Because of this property, Golay complementary sequences can be utilised to construct Hadamard matrices defining sets of orthogonal spreading sequences for DS CDMA systems of the lengths not necessa...

متن کامل

Quaternary Golay sequence pairs I: even length

The origin of all 4-phase Golay sequences and Golay sequence pairs of even length at most 26 is explained. The principal techniques are the three-stage construction of Fiedler, Jedwab and Parker [FJP08] involving multi-dimensional Golay arrays, and a “sum-difference” construction that modifies a result due to Eliahou, Kervaire and Saffari [EKS91]. The existence of 4-phase seed pairs of lengths ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008