Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential.

نویسندگان

  • G L Alfimov
  • P G Kevrekidis
  • V V Konotop
  • M Salerno
چکیده

In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear Schrödinger equation with a periodic potential. We show that the nonlinear Schrödinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in nonlinear photonic crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential

We justify the validity of the discrete nonlinear Schrödinger equation for the tight-binding approximation in the context of the Gross–Pitaevskii equation with a periodic potential. Our construction of the periodic potential and the associated Wannier functions is based on the previous work [7], while our analysis involving energy estimates and Gronwall’s inequality addresses time-dependent loc...

متن کامل

Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential

We justify the use of the lattice equation (the discrete nonlinear Schrödinger equation) for the tight-binding approximation of stationary localized solutions in the context of a continuous nonlinear elliptic problem with a periodic potential. We rely on properties of the Floquet band-gap spectrum and the Fourier–Bloch decomposition for a linear Schrödinger operator with a periodic potential. S...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Investigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation

In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...

متن کامل

Nonlinear Schrödinger, Infinite Dimensional Tori and Neighboring Tori

of the periodic nonlinear Schrödinger equation, where u(x, t) is a complex valued function in the class of smooth period one functions. In this work, we explain in what sense the generic level set of the constants of motion for the periodic nonlinear Schrödinger equation is an infinite dimensional torus, why the solution of the Hamiltonian equation is almost periodic in time, and describe how n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002