LiDAR-Based Classification of Sagebrush Community Types
نویسندگان
چکیده
Sagebrush (Artemisia spp.) communities constitute the largest temperate semidesert in North America and provide important rangelands for livestock and habitat for wildlife. Remote sensing methods might provide an efficient method to monitor sagebrush communities. This study used airborne LiDAR and field data to measure vegetation heights in five different community types at the Reynolds Creek Experimental Watershed, southwestern Idaho: herbaceous-dominated, low sagebrush (Artemisia arbuscula) –dominated, big sagebrush (Artemisia tridentata spp.) –dominated, bitterbrush (Purshia tridentata) -dominated, and other vegetation community types. The objectives were 1) to quantify the correlation between field-measured and airborne LiDARderived shrub heights, and 2) to determine if airborne LiDAR-derived mean vegetation heights can be used to classify the five community types. The dominant vegetation type and vegetation heights were measured in 3 3 3 m field plots. The LiDAR point cloud data were converted into a raster format to generate a maximum vegetation height map in 3-m raster cells. The regression relationship between field-based and airborne LiDAR-derived shrub heights was significant (R50.77; P value ,0.001). An analysis of variance test with all pairwise post hoc comparisons indicated that LiDAR-derived vegetation heights were significantly different among all vegetation community types (all P values ,0.01), except for herbaceous-dominated communities compared to low sagebrush-dominated communities. Although LiDAR measurements consistently underestimated vegetation heights in all community types, shrub heights at some locations were overestimated due to adjacent taller vegetation. We recommend for future studies a smaller rasterized pixel size that is consistent with the target vegetation canopy diameter.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملErrors in LiDAR-derived shrub height and crown area on sloped terrain
This study developed and tested four methods for shrub height measurements with airborne LiDAR data in a semiarid shrub-steppe in southwestern Idaho, USA. Unique to this study was the focus of sagebrush height measurements on sloped terrain. The study also developed one of the first methods towards estimating crown area of sagebrush from LiDAR. Both sagebrush height and crown area were underest...
متن کاملSmall-footprint Lidar Estimations of Sagebrush Canopy Characteristics
The height and shape of shrub canopies are critical measurements for characterizing shrub steppe rangelands. Remote sensing technologies might provide an efficient method to acquire these measurements across large areas. This study compared point-cloud and rasterized lidar data to field-measured sagebrush height and shape to quantify the correlation between field-based and lidar-derived estimat...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملIntegration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کامل