Bounded Plateau and Weierstrass Martingales with Infinite Variation in Each Direction

نویسنده

  • P. F. X. M
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Compactness Principle for Bounded Sequences of Martingales with Applications

For H1-bounded sequences of martingales, we introduce a technique, related to the Kadeč–Peà lczynski-decomposition for L1 sequences, that allows us to prove compactness theorems. Roughly speaking, a bounded sequence in H1 can be split into two sequences, one of which is weakly compact, the other forms the singular part. If the martingales are continuous then the singular part tends to zero in t...

متن کامل

Optimal Novikov-type criteria for local martingales with jumps

We consider càdlàg local martingales M with initial value zero and jumps larger than a for some a larger than or equal to −1, and prove Novikov-type criteria for the exponential local martingale to be a uniformly integrable martingale. We obtain criteria using both the quadratic variation and the predictable quadratic variation. We prove optimality of the coefficients in the criteria. As a coro...

متن کامل

Ph.D. QUALIFYING EXAM IN REAL ANALYSIS

Solution: Since {xn} ∞ n=1 is a bounded sequence in R, the Bolzano-Weierstrass Theorem ensures that there is at least one convergent subsequence: let L be its limit. If the entire sequence does not converge to L, then for some > 0 there must be infinitely many terms of the sequence outside the ball B = (L− , L+ ). This infinite but bounded collection of terms likewise by Bolzano-Weierstrass has...

متن کامل

On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications

In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.

متن کامل

Effective Fractal Dimension in Algorithmic Information Theory

Hausdorff dimension assigns a dimension value to each subset of an arbitrary metric space. In Euclidean space, this concept coincides with our intuition that smooth curves have dimension 1 and smooth surfaces have dimension 2, but from its introduction in 1918 [23] Hausdorff noted that many sets have noninteger dimension, what he called “fractional dimension”. The development and applications o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999