A bacterial negative transcription regulator binding on an inverted repeat in the promoter for epothilone biosynthesis
نویسندگان
چکیده
BACKGROUND Microbial secondary metabolism is regulated by a complex and mostly-unknown network of global and pathway-specific regulators. A dozen biosynthetic gene clusters for secondary metabolites have been reported in myxobacteria, but a few regulation factors have been identified. RESULTS We identified a transcription regulator Esi for the biosynthesis of epothilones. Inactivation of esi promoted the epothilone production, while overexpression of the gene suppressed the production. The regulation was determined to be resulted from the transcriptional changes of epothilone genes. Esi was able to bind, probably via the N-terminus of the protein, to an inverted repeat sequence in the promoter of the epothilone biosynthetic gene cluster. The Esi-homologous sequences retrieved from the RefSeq database are all of the Proteobacteria. However, the Esi regulation is not universal in myxobacteria, because the esi gene exists only in a few myxobacterial genomes. CONCLUSIONS Esi binds to the epothilone promoter and down-regulates the transcriptional level of the whole gene cluster to affect the biosynthesis of epothilone. This is the first transcription regulator identified for epothilone biosynthesis.
منابع مشابه
Identification of the Transcriptional Regulator NcrB in the Nickel Resistance Determinant of Leptospirillum ferriphilum UBK03
The nickel resistance determinant ncrABCY was identified in Leptospirillum ferriphilum UBK03. Within this operon, ncrA and ncrC encode two membrane proteins that form an efflux system, and ncrB encodes NcrB, which belongs to an uncharacterized family (DUF156) of proteins. How this determinant is regulated remains unknown. Our data indicate that expression of the nickel resistance determinant is...
متن کاملA feedback regulatory model for RifQ-mediated repression of rifamycin export in Amycolatopsis mediterranei
BACKGROUND Due to the important role of rifamycin in curing tuberculosis infection, the study on rifamycin has never been stopped. Although RifZ, which locates within the rifamycin biosynthetic cluster, has recently been characterized as a pathway-specific regulator for rifamycin biosynthesis, little is known about the regulation of rifamycin export. RESULTS In this work, we proved that the e...
متن کاملGene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining
Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...
متن کاملAnalysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus.
The LysR-type transcriptional regulator CbbR controls the expression of the cbb and gap-pgk operons in Xanthobacter flavus, which encode the majority of the enzymes of the Calvin cycle required for autotrophic CO2 fixation. The cbb operon promoter of this chemoautotrophic bacterium contains three potential CbbR binding sites, two of which partially overlap. Site-directed mutagenesis and subsequ...
متن کاملThe border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator.
Balhimycin, produced by the actinomycete Amycolatopsis balhimycina DSM5908, is a glycopeptide antibiotic highly similar to vancomycin, the antibiotic of 'last resort' used for the treatment of resistant Gram-positive pathogenic bacteria. Partial sequence of the balhimycin biosynthesis gene cluster was previously reported. In this work, cosmids which overlap the region of the characterized gene ...
متن کامل