Regulation of T Cell Receptor Activation by Dynamic Membrane Binding of the CD3ɛ Cytoplasmic Tyrosine-Based Motif
نویسندگان
چکیده
Many immune system receptors signal through cytoplasmic tyrosine-based motifs (ITAMs), but how receptor ligation results in ITAM phosphorylation remains unknown. Live-cell imaging studies showed a close interaction of the CD3epsilon cytoplasmic domain of the T cell receptor (TCR) with the plasma membrane through fluorescence resonance energy transfer between a C-terminal fluorescent protein and a membrane fluorophore. Electrostatic interactions between basic CD3epsilon residues and acidic phospholipids enriched in the inner leaflet of the plasma membrane were required for binding. The nuclear magnetic resonance structure of the lipid-bound state of this cytoplasmic domain revealed deep insertion of the two key tyrosines into the hydrophobic core of the lipid bilayer. Receptor ligation thus needs to result in unbinding of the CD3epsilon ITAM from the membrane to render these tyrosines accessible to Src kinases. Sequestration of key tyrosines into the lipid bilayer represents a previously unrecognized mechanism for control of receptor activation.
منابع مشابه
Activation of the B Cell Receptor Leads to Increased Membrane Proximity of the Igα Cytoplasmic Domain
Binding of antigen to the B cell receptor (BCR) induces conformational changes in BCR's cytoplasmic domains that are concomitant with phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs). Recently, reversible folding of the CD3ε and ξ chain ITAMs into the plasma membrane has been suggested to regulate T cell receptor signaling. Here we show that the Igα and Igβ cytopla...
متن کاملLocal changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain
The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to b...
متن کاملCis and Trans Regulatory Mechanisms Control AP2-Mediated B Cell Receptor Endocytosis via Select Tyrosine-Based Motifs
Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL)...
متن کاملCytotoxic T Lymphocyte Antigen 4 (Ctla-4) Engagement Delivers an Inhibitory Signal through the Membrane-Proximal Region in the Absence of the Tyrosine Motif in the Cytoplasmic Tail
Cytotoxic T lymphocyte antigen 4 (CTLA-4) is a T cell costimulation receptor that delivers inhibitory signals upon activation. Although the tyrosine-based motif ((165)YVKM) within its cytoplasmic tail has been shown to associate in vitro with Src homology 2 domain-containing tyrosine phosphatase (SHP-2) and phosphatidylinositol 3 kinase upon phosphorylation, the mechanism of negative signaling ...
متن کاملPlatelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen.
Platelet responses to collagen are mediated by the combined actions of the integrin alpha2beta1, which serves as a major collagen-binding receptor, and the GPVI/FcRgamma-chain complex, which transmits collagen-specific activation signals into the cell interior through the action of an immunoreceptor tyrosine-based activation motif within the cytoplasmic domain of the FcRgamma-chain. Despite muc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 135 شماره
صفحات -
تاریخ انتشار 2008