Star arboricity

نویسندگان

  • Noga Alon
  • Colin McDiarmid
  • Bruce A. Reed
چکیده

A star forest is a forest all of whose components are stars. The star arboricity, st(G) of a graph G is the minimum number of star forests whose union covers all the edges of G. The arboricity, A(G), of a graph G is the minimum number of forests whose union covers all the edges of G. Clearly st(G) > A(G). In fact, Algor and Alon have given examples which show that in some cases st(G) can be as large as A(G)+ f~(log/k) (where s is the maximum degree of a vertex in G). We show that for any graph G, st(G) <_ A(G) + O(log ~).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acircuitic directed star arboricity of planar graphs with large girth

A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves. The acircuitic directed star arboricity of an oriented graph G is the minimum number of edge-disjoint directed star forests whose union covers all edges of G and such that the union of two such forests is acircuitic. We show that graphs with maximum average degree less than 7 ...

متن کامل

On star and caterpillar arboricity

We give new bounds on the star arboricity and the caterpillar arboricity of planar graphs with given girth. One of them answers an open problem of Gyárfás and West: there exist planar graphs with track number 4. We also provide new NP-complete problems.

متن کامل

The acircuitic directed star arboricity of subcubic graphs is at most four

A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves. The acircuitic directed star arboricity of an oriented graph G (that is a digraph with no opposite arcs) is the minimum number of edge-disjoint directed star forests whose union covers all edges of G and such that the union of any two such forests is acircuitic. We show that e...

متن کامل

On incidence coloring and star arboricity of graphs

In this note we show that the concept of incidence coloring introduced in [BM] is a special case of directed star arboricity, introduced in [AA]. A conjecture in [BM] concerning asmyptotics of the incidence coloring number is solved in the negative following an example in [AA]. We generalize Theorem 2.1 of [AMR] concerning the star arboricity of graphs to the directed case by a slight modificat...

متن کامل

Covering regular graphs with forests of small trees

A (d, k) -forest is a forest consisting of trees whose diameters are at most d and whose maximum vertex degree ,6. is at most k. The (d, k)-arboricity of a graph G is the minimum number of (d, k}-forests needed to cover E(G). This concept is a common generalization of linear k-arboricity and star arboricity. Using a probabilistic approach developed recently for linear karboricity, we obtain an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1992