Particle dynamics and deposition in true-scale pulmonary acinar models

نویسندگان

  • Rami Fishler
  • Philipp Hofemeier
  • Yael Etzion
  • Yael Dubowski
  • Josué Sznitman
چکیده

Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1-2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dyn...

متن کامل

Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles

BACKGROUND It has been hypothesized that by coupling magnetic particles to inhaled therapeutics, the ability to target specific lung regions (eg, only acinar deposition), or even more so specific points in the lung (eg, tumor targeting), can be substantially improved. Although this method has been proven feasible in seminal in vivo studies, there is still a wide gap in our basic understanding o...

متن کامل

Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay.

It is largely acknowledged that inhaled particles ranging from 0.001 to 10 m are able to reach and deposit in the alveolated regions of the lungs. To date, however, the bulk of numerical studies have focused mainly on micrometer sized particles whose transport kinematics are governed by convection and sedimentation, thereby capturing only a small fraction of the wider range of aerosols leading ...

متن کامل

Aerosols in healthy and emphysematous in silico pulmonary acinar rat models.

There has been relatively little attention given on predicting particle deposition in the respiratory zone of the diseased lungs despite the high prevalence of chronic obstructive pulmonary disease (COPD). Increased alveolar volume and deterioration of alveolar septum, characteristic of emphysema, may alter the amount and location of particle deposition compared to healthy lungs, which is parti...

متن کامل

The effect of heterogeneity of lung structure on particle deposition in the rat lung.

Differences in particle deposition patterns between human and rat lungs may be attributed primarily to their differences in breathing patterns and airway morphology. Heterogeneity of lung structure is expected to impact acinar particle deposition in the rat. Two different morphometric models of the rat lung were used to compute particle deposition in the acinar airways: the multiple-path lung (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015