Low area/power decimal addition with carry-select correction and carry-select sum-digits
نویسندگان
چکیده
We improve a carry-select technique for decimal adders, where pairs of corrective carry-out bits for all decimal positions are computed in parallel. Selection is based on the corresponding positional carry-in bits, which are produced by a quaternary parallel prefix carry network. Carry-out bits select pairs of corrected or intact sum-digits to be later selected by actual carry-in bits at the end of addition process. Analytical evaluation and synthesis results for various hardware sharing architectures on binary, decimal, adders, and subtractors show lower area consumption and less power dissipation of the proposed designs at no additional latency, compared to previous works. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Design and Synthesis of High Speed Low Power Signed Digit Adders
Signed digit (SD) number systems provide the possibility of constant-time addition, where inter-digit carry propagation is eliminated. Such carry-free addition is primarily a three-step process; adding the equally weighted SDs to form the primary sum digits, decomposing the latter to interim sum digits and transfer digits, which commonly belong to {–1, 0, 1}, and finally adding the tra...
متن کاملAn Area Efficient 32-bit Carry-select Adder for Low Power Applications
CSLA is used in many computational systems to alleviate the problem of carry propagation delay by independently generating multiple carries and then select a carry to generate the sum [1]. However, the CSLA is not area efficient because it uses multiple pairs of Ripple Carry Adders (RCA) to generate partial sum and carry by considering carry input Cin=0 and cin=1, then the final sum and carry a...
متن کاملFast Mux-based Adder with Low Delay and Low PDP
Adders, as one of the major components of digital computing systems, have a strong influence on their performance. There are various types of adders, each of which uses a different algorithm to do addition with a certain delay. In addition to low computational delay, minimizing power consumption is also a main priority in adder circuit design. In this paper, the proposed adder is divided into s...
متن کاملA low power carry select adder with reduced area
A carry-select adder can be implemented by using single ripple carry adder and an add-one circuit [1] instead of using dual ripple-carry adders. This paper proposes a new add-one circuit using the first zero finding circuit and multiplexers to reduce the area and power with no speed penalty. For bit length n = 64, this new carry-select adder requires 38 percent fewer transistors than the dual r...
متن کاملSelf-checking Carry-selectAdder with Sum-bit Duplication
In this paper the first code-disjoint totally self-checking carry-select adder is proposed. The adder blocks are fast ripple adders with a single NAND-gate delay for carry-propagation per cell. In every adder block both the sum-bits and the corresponding inverted sum-bits are simultaneously implemented. The parity of the input operands is checked against the XOR-sum of the propagate signals. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integration
دوره 47 شماره
صفحات -
تاریخ انتشار 2014